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How do we detect symmetry in a molecule?

Given a spatial configuration ¥, those Isometries (distance preserving
automorphisms of space which leave §  automorphisms):

unchanged form a group G, and this  Translations

group describes exactly the symmetry » Rotations

possessed by §. » Improper Rotations
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Overlap between structures

The definition of the overlap between two structures is not univocally
defined, and depends on how we define the structure Q. For structures

defined as a set of vertices we may use the distances between vertices
to define the overlap
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Inertia tensor

To analyze the symmetry of a molecule (geometric shape) it is convenient

to translate the center of mass (geometric center) and to align it with its
principal axes of inertia
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Moments of inertia and symmetry

Molecules can be classified into four different groups according to their
principal moments of inertia

Linear Linear rotors: I,=I, #1.=0
Coov, Dooh

Spherlcal
rotor Spherical rotors: I, =1y = I
T4, On, In

rS(:/trcr:rmetrlc a’?‘ Symmetric rotors: [, =1, = I
Cn, Dn, Sn, Cnv, Cnh, Dnh, and Dng

ifn=3

Asymmetric /. |
rotor
Jo— Asymmetric rotors: I, = Ip = L.




How do we apply a rotation to a molecule?

If our molecular structure is defined by a set of points (positions of the nuclei)
with the origin at the center of mass (geometric center), any point symmetry
operation can be executed by a simple matrix multiplication:
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Rodriguez’s formula: rotation matrix for an arbitrary axis (ni, nz, nz):

cos + ni(1l — cosf) ning(l — cosf) — ngsin ning(1l — cos#) + nysin b
R(7,0) = | nyny(1l — cosf) + ngsiné cos B + n3(1 — cos ) ngng(l — cosf) — n, sind
nng(l —cos) —nysinfd  nyng(l — cosf) + n, sind cos ! + n3(1 — cosf)




How to find the point group?

Symmetry - "Tree" Once the molecule is centered
with the CM in the origin and
we know the principal moments
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Continuous symmetry measures

When a given transformation is not
a symmetry operation for the Q object

' &
we will get an overlap between 0 and 1. _2>

In this case we can use this overlap to
measure how far the object is from having
the desired symmetry by taking into
account the overlaps calculated for all
operations in a given group and
minimizing them with respect of the
orientation of the symmetry elements
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Continuous Symmetry Measures

Let us consider an arbitrary object |()) in a metric space
and a point-symmetry group G with i1 R; operations
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Piano Stool Compounds

Despite the flexibility e
of one part of the
molecule, the two
collinear incompatible
rotation axes are
maintained




Continuous Chirality Measures

Let us consider an arbitrary shape | R ) and its enantiomeric shape |S)

verlap between
RlS - overlap
CCM (R)=100-min|1— (R[S) Hande CCM(R)= CCM(S)
/' <R ‘ R > \ normalization

factor

minimization with respect to relative
position, orientation, and size of R and S

Achiral shape Chiral shape
(RS) \ S R\ S)
< S < 1
CCM (R) 0 CCM (R) >0

0<CCM(R) <100 CCM (R)=min{S(R.,S,),S(R.S,),S(R,S,)...}
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Continuous Shape Measures

Let us consider an arbitrary shape | Q ) and a reference (ideal) shape |P )

P — overlap between
S(Q9P):100mln[1— <Q > Pand Q

/' nornflaaczitlon

minimization with respect to relative
position, orientation, and size of Q and P
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0<S(Q,P)<100



Similarity Between Shapes

The basic ingredient to calculate a CShM is the overlap between the problem
shape | Q) and a reference (ideal) shape |P )

P <Q|P>=<Q|0> Same shape
-

<Q[P><< Q|0 > Different shapes

/ S(Q,P)= 100-min[1%

Measures the difference
(dissimilarity) between
| Q> and | P>

If IQ)and |P) are represented by a distribution function (positive definite):

O0>=p,(x,5,2)
; —  <0[P>= ][ py(x.y.2)p,(x.y.2)dxdydz
P>=,0P(x,y,Z) X,V,Z




Discrete structures

Shapes are often described as a discrete set of points (vertices) in Euclidean space

0={(x,72), -(x,7,02.)}

The CShM can be obtained by minimizing distances between vertices:
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H. Zabrodsky, S. Peleg, D. Avnir, J. Am. Chem. Soc. 1992, 114,7843



Measuring (A)symmetry

Strongly distorted @ Moderately distorted  Slightly distorted Octahedron

0.00

Non-octahedral Octahedral



Which Coordination Geometry?

S(hexagon) = 33.4
S(pentagonal pyramid) = 19.0

S(octahedron) = 5.61

a2
[Co{PC Hs(EtS),},] .' S(triangular prism) = 3.52

000000 R

Coord. Chem. Rev. 249 (2005), 1693-1708



Polyhedra in CShM

[t is important to distinguish between regular and centered structures:

T T — T ——

L, polyhedron centered ML, polyhedron

Permutations between M and L are not allowed in the optimization process.
For centered polyhedra we must explicitly indicate which vertex is M.



Shape Maps

Evaluate two different shape measures for taking different polyhedra P as a
reference: Sq(P1), So(P2) and plot the results as a Sg(I’2) vs Sg(P1) graph

Tetrahedron — square
shape map for 10,000
random generated
ML4 structures with
equal M-L distances

S(SP4)




Distortion paths

Shape maps are useful in distinguishing between different types of distortions
for a given ML, structure
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Minimal distortion umbrella (U)

path:
How to go from P
to P> loosing the

O ' >< = >< scissor (Sc)
minimal P; shape /

spread (S)

along the path




T'etrahedral or Square planar?

1st transition series

S(SP4)

S(SP4)

ML4 coordination
compounds

2nd & 3rd transition series




