USACH. Santiago, Chile 5 - 9 de Junio, 2023

Irreducible representations & character theory

Pere Alemany Universitat de Barcelona

C_{3v} representations in \mathbb{R}^3

Let's build a representation for C_{3v} in \mathbb{R}^3 using the standard cartesian orthogonal basis

C_{3v} representations in \mathbb{R}^3

Now let's build the representation changing the basis in the $sp\{e_1,e_2\}$ subspace to adapt it to the triangular symmetry

Block-diagonal matrices

Using different basis sets we get two different representations for the C_{3v} group. They are equivalent since they are related by a similarity transformation $\mathbf{A} = \mathbf{T}^{-1} \mathbf{B} \mathbf{T}$.

Ê	Ĉ₃	$\hat{C}_{_3}^2$	$\hat{\sigma}_{_1}$	$\hat{\sigma}_{_{2}}$	$\hat{\sigma}_{_{3}}$
$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \left($	$ \begin{array}{ccc} -1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{array} \right) $	$\begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right) \; \left(\right.$	$ \begin{array}{ccc} -1/2 & -\sqrt{3}/2 & 0 \\ -\sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{array} \right) $	$\left(\begin{array}{rrrr} -1/2 & \sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{array}\right)$
$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	$\left(\begin{array}{rrrr} 0 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	$\left(\begin{array}{rrrr} -1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$	$\left(\begin{array}{rrrr} 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	$\left(\begin{array}{rrrr} -1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	$\left(\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$

All matrices have the same **block-diagonal** shape

Building large representations from smaller ones

For C_{3v} we have found that there are only three fundamentally different representations

	Ê	$\hat{C}_{_3}$	$\hat{C}_{_3}^2$	$\hat{\sigma}_{_1}$	$\hat{\sigma}_{_2}$	$\hat{\sigma}_{_3}$
Γ1	1	1	1	1	1	1
Γ2	1	1	1	-1	-1	-1
Γ ₃	$ \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) $	$\left(\begin{array}{cc} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{array}\right)$

Can we use them as basic elements to build larger representations?

Block-diagonal matrices preserve the group product

A group of matrices forms a representation if it has the same multiplication table as the original group elements:

If we build diagonal block matrices using smaller representations, the matrix product preserves the product of the individual blocks:

The diagonal block matrices form also a representation

Direct sum of representations

A representation Γ obtained by building block-diagonal matrices of other representations Γ_i is called the direct sum of all Γ_i

Reduction of matrix representations

Our interest is really in simplifying representations, thus we are interested in reversing the above procedure:

$$\mathbf{D}(R) = \begin{pmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ \mathbf{R}_{21} & \mathbf{R}_{22} \end{pmatrix} \longrightarrow \overline{\mathbf{D}}(R) = \mathbf{T}^{-1} \begin{pmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ \mathbf{R}_{21} & \mathbf{R}_{22} \end{pmatrix} \mathbf{T} = \begin{pmatrix} \overline{\mathbf{R}}_{1} & \mathbf{0} \\ \mathbf{0} & \overline{\mathbf{R}}_{2} \end{pmatrix}$$

The process of finding representations of lower dimension whose direct sum is equivalent to a given representation is termed **reduction of a representation**.

Irreducible representations

Reduction can be repeated until the blocks can not be further reduced.

Representations whose matrices can not be simplified to block-diagonal form are called **irreducible representations** (IR) of the group

The search for simplest forms amounts to looking for non-equivalent IRs of dimension 1, 2, 3, ...

... but we do not need to continue indefinitely, since the number of IRs for any finite group is limited and determinable: it's equal to the number of conjugacy classes of the group!

Orthogonality relations for representations

Let us consider the matrices of all IRs of a group

	Ê	$\hat{C}_{_3}$	$\hat{C}_{_3}^2$	$\hat{\sigma}_{_1}$	$\hat{\sigma}_{_2}$	$\hat{\sigma}_{_3}$
A1	1	1	1	1	1	1
A ₂	1	1	1	-1	-1	-1
Е	$ \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) $	$\left(\begin{array}{cc} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{array}\right)$	$\left(\begin{array}{cc} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{array}\right)$

and build a set of vectors with the R_{ij} elements

$$g_{1} = (1,1,1,1,1,1) \qquad g_{2} = (1,1,1,-1,-1,-1)$$

$$g_{3} = (1,-1/2,-1/2,1,-1/2,-1/2) \qquad g_{4} = (0,-\sqrt{3}/2,\sqrt{3}/2,0,-\sqrt{3}/2,\sqrt{3}/2)$$

$$g_{5} = (0,\sqrt{3}/2,-\sqrt{3}/2,0,-\sqrt{3}/2,\sqrt{3}/2) \qquad g_{6} = (1,-1/2,-1/2,-1,1/2,1/2)$$

The vectors are all orthogonal to each other! (this is true for any set of equivalent unitary IRs)

If n_{α} is the dimension of the Γ_{α} IR and *g* the order of the group it seems also that:

$$\sum_{\alpha} n_{\alpha}^2 = g$$

Character of a representation

The **trace of the matrix** which represents an element R of a group in a representation Γ_{μ} is called its character

 $\chi^{\mu}(R) = Tr\left\{\mathbf{D}^{\mu}(R)\right\}$

The complete set of characters is called the character of the representation

	Ê	$\hat{C}_{_3}$	$\hat{C}_{_3}^{_2}$	$\hat{\sigma}_{_1}$	$\hat{\sigma}_{_{\rm 2}}$	$\hat{\sigma}_{_3}$
A ₁	1	1	1	1	1	1
A ₂	1	1	1	-1	-1	-1
Е	2	-1	-1	0	0	0
E	2	-1	-1	0	0	0

Since equivalent representations are related by a similarity transformation that preserves the trace of the matrices, the characters of two equivalent representations are identical

Characters of conjugate elements

In any arbitrary representation, two elements conjugate to each other (two elements in the same class) have the same character

Orthogonality relations for characters

Orthogonality relations for matrix elements of IRs lead to the existence of orthogonality relations for characters

C_{3v}	Ê	$2\hat{C}_{_3}$	$3\hat{\sigma}$		
A ₁	1	1	1	$\sum \chi^{\mu}(R) \chi^{\nu}$	$(R)^* = g\delta_{m}$
A ₂	1	1	-1	R	μν
Е	2	-1	0		
μ,	/ = A ₁		1x1 + 2	2x[1x1] + 3x [1x1]	= 6
μ,\	$\prime = A_2$		1x1 + 2	2x[1x1] + 3x[(-1)x(-1)]	= 6
µ,v = E			2x2 + 2	= 6	
µ=A ₂ ,v = E		1x2 + 2x [1x (-1)] + 3x[(-1)x0]		= 0	

How many times does an IR appear in a RR?

Let us consider a reducible representation

where *k* is the number of classes (= number of IRs) in the group

Multiplying on both sides by $\chi^{\mu}(R)^*$ and summing over all operations of the group:

$$\sum_{R} \chi^{red}(R) \chi^{\mu}(R)^{*} = \sum_{R} \sum_{\nu=1}^{k} a_{\nu} \chi^{\nu}(R) \chi^{\mu}(R)^{*} = \sum_{\nu=1}^{k} a_{\nu} g \delta_{\mu\nu} = g a_{\mu\nu}$$

and therefore:

$$a_{\mu} = g^{-1} \sum_{R} \chi^{red}(R) \chi^{\mu}(R)^{*}$$

Reducibility criterion

We can also use the orthogonality relations to check if a representation is irreducible or not.

If

$$\Gamma^{\alpha} = a_{1} \Gamma^{1} \oplus a_{2} \Gamma^{2} \oplus \dots \oplus a_{\mu} \Gamma^{\mu} \oplus \dots \oplus a_{k} \Gamma^{k}$$

is irreducible, then all a_{μ} coefficients are zero except one, that will be the unity. So, if Γ^{α} is irreducible, its characters must satisfy

$$a_{\alpha} = 1 = g^{-1} \sum_{R} \chi^{\alpha}(R) \chi^{\alpha}(R) *$$

in other words, a representation is irreducible when:

$$\sum_{R} \chi^{\alpha}(R) \chi^{\alpha}(R)^{*} = g$$