Introduction to group theory

Pere Alemany
Universitat de Barcelona

The Erlangen program

Felix Klein, 1849-1925

In 1872 Felix Klein proposed that group theory, a branch of mathematics that uses algebraic methods to abstract the idea of symmetry, was the most useful way of organizing geometrical knowledge.

Modern definition of symmetry

Given a spatial configuration \mathfrak{F}, those automorphisms of space which leave \mathfrak{F} unchanged form a group Γ, and this group describes exactly the symmetry possessed by \mathfrak{F}.

Hermann Weyl, 1885-1955

Automorphisms of Euclidean space

A geometrical object has a symmetry if there is an automorphism in Euclidean space, that is, a function $T: R^{3} \rightarrow R^{3}$, that maps the object onto itself:

$T: R^{3} \rightarrow R^{3}$ is a function for the whole space, not only for the points in the object.
To map the object onto itself, T must be an isometry, that is, a distance preserving automorphism.

Types of symmetry

The types of symmetries that are possible for an object depend on the set of available geometric transformations and which object properties should remain unchanged after a transformation

symmetry in 3D not possible in 2D

symmetry without color no symmetry with color

Algebra (High school version)

Branch of mathematics concentrating in solving equations:

$$
\text { Solve } 5(x-3)=4 x+9-x
$$

Simplify each side of the equation

$$
\begin{aligned}
& 5(x-3)=4 x+9-x \\
& 5 x-15=3 x+9
\end{aligned}
$$

Add the opposite of -15 to both sides.
Simplify.
$5 x-15+15=3 x+9+15$
$5 x=3 x+24$

Add the opposite of $3 x$ to both sides.
Simplify.
$5 x-3 x=3 x+24-3 x$
$2 x=24$

Multiply both sides by the reciprocal of 2 .
Simplify.

$$
\frac{1}{2} \cdot 2 x=\frac{1}{2} \cdot 24
$$

$$
x=12
$$

Abstract (modern) algebra

Branch of mathematics seeking to reveal the basic principles which apply equally to all known and possible "algebras"

Algebraic structures

Arbitrary set of objects (numbers, matrices, functions, permutations, symmetry operations, ...) and certain operations defined between them (addition, multiplication, concatenation, ...)

Example:
Groups, vector spaces, modules, ...

Morphisms

Structure-preserving maps from one algebraic structure to another one of the same type.

Example:
Homomorphism between groups

Operations

An operation * on a set A is a rule which assigns to each ordered pair (a, b) of A exactly one element in $\mathrm{A}: \mathrm{c}=\mathrm{a} * \mathrm{~b}$

$$
\begin{array}{ll}
\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\} \\
\text { set of integer numbers } & \begin{array}{l}
a=-3 \\
b=5
\end{array}
\end{array} \quad \begin{array}{cc}
\text { Sum } & \text { Multiplication } \\
\end{array}
$$

$\mathrm{M}=$ set of 2×2 matrices withreal coeficients

$$
\begin{array}{cc}
& \text { Matrix } \\
\text { Matrix sum } & \text { multiplication }
\end{array}
$$

$$
\begin{array}{ll}
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) & A B=\left(\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right) \\
\mathbf{B}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) & B A=\left(\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right)
\end{array}
$$

Operations between geometric transformations

Objects:

geometrical transformations

Operation:

sequential composition of geometrical transformations

Basic properties of proper operations

- The operation $\mathrm{a} * \mathrm{~b}$ must be defined for all ordered pairs $\mathrm{a}, \mathrm{b} \in \mathrm{A}$

Division in \mathbb{R} is not a proper operation since $a \div 0$ is not defined

- The result $\mathrm{a} * \mathrm{~b}$ of an operation must be uniquely defined
- Closure condition: if $\mathrm{a}, \mathrm{b} \in \mathrm{A}$ then $\mathrm{a} * \mathrm{~b}$ must be an element of A

Division in \mathbb{Z} is not a proper operation since $a \div \mathrm{b}$ is not always in \mathbb{Z}

Associativity

An operation is a rule to combine two elements, so, if we want to combine three elements $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$ we have two choices:

$$
a *(b * c) \text { or }(a * b) * c
$$

The operation is said to be associative if

$$
a *(b * c)=(a * b) * c \text { for any } a, b, c \in A
$$

All operations considered here will be associative:
sum and multiplication of numbers / matrices sequential composition of geometric transformations / permutations

Commutativity

An operation is said to be commutative if:

$$
a * b=b * a
$$

for any $a, b \in A$

Multiplication in \mathbb{Z} is commutative

$$
\begin{aligned}
& 3 \times 7=21 \\
& 7 \times 3=21
\end{aligned}
$$

Matrix multiplication is not commutative
$A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
$B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$

$$
A B=\left(\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right) \neq\left(\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right)=B A
$$

Neutral element

If there is an element $\mathrm{e} \in \mathrm{A}$ such that:

$$
\mathrm{a} * \mathrm{e}=\mathrm{a} \quad \text { and } \mathrm{e} * \mathrm{a}=\mathrm{a} \quad \text { for all } \mathrm{a} \in \mathrm{~A}
$$

e is called the neutral element (or identity) of A with respect to *

> neutral element for multiplication of in the set of 2×2 matrices $\mathbf{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \mathbf{A I}=\mathbf{I A}=\mathbf{A}$ $\mathbf{0} \begin{aligned} & \text { neutral element for addition } \\ & \text { of real numbers }\end{aligned}$ $\mathbf{1} \begin{aligned} & \text { neutral element for multiplication } \\ & \text { of real numbers }\end{aligned}$
neutral element for rotations around a given axis

Inverse elements

If there is an element $x \in A$ such that:

$$
\mathrm{x} * \mathrm{a}=\mathrm{e} \quad \text { and } \quad \mathrm{a} * \mathrm{x}=\mathrm{e}
$$

then x is called the inverse of a with respect to *
inverse element of a with respect
-a to addition of real numbers
a^{-1} inverse element of a with respect to addition of real numbers
inverse element for rotations around a given axis

Groups

A group $<\mathrm{G}$, * $>$ is a set G with an operation * satisfying:

1) G is closed with respect to the associative operation *
2) There is a neutral element e with respect to * in G
3) For each $a \in G$ there is also its inverse a^{-1} with respect to * in G

The number of elements in G is called the order of the group, h_{G} or $|G|$
If h_{G} is finite we speak of finite groups, if it is infinite, then G is an infinite group

Commutativity is not included in the definition, but we may have commutative or Abelian groups which have this extra property

Infinite Groups

Some examples of infinite groups

$$
\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\} \quad\langle\mathbb{Z},+\rangle \quad \text { The additive group of the integers }
$$

The general linear group
 over the real numbers of order n

O(3)
The orthogonal group

The set of $n \times n$ invertible matrices of real numbers with the operation of ordinary matrix multiplication

The set of 3×3 orthogonal matrices ($R^{\top} R=I$) and the operation of ordinary matrix multiplication

The set of 3×3 orthogonal matrices ($R^{\top} R=I$) with $\operatorname{det}(R)=1$ and the operation of ordinary matrix multiplication

Finite Groups

Some examples of finite groups

$$
\begin{gathered}
G=\{-i, i,-1,1\} \quad \text { with ordinary multiplication of complex numbers } \\
\mathbb{Z}_{6}=\{0,1,2,3,4,5\} \quad \text { with addition modulo } 6 \\
p_{0}=\left(\begin{array}{lll}
1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow \\
1 & 2 & 3
\end{array}\right) \quad p_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
\downarrow \\
\downarrow & \downarrow \\
1 & 3 & 2
\end{array}\right) \quad \begin{array}{l}
\text { Permutations of } 3 \text { elements with the } \\
\text { sequential composition of permutations } \\
\mathrm{S}_{3} \text { : the symmetric group of } 3 \text { elements }
\end{array} \\
p_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow \\
3 & 1 & 2
\end{array}\right) \quad p_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow \\
2 & 1 & 3
\end{array}\right) \\
p_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow \\
2 & 3 & 1
\end{array}\right) \quad p_{5}=\left(\begin{array}{lll}
{\left[p_{1} \circ p_{2}\right](1)=p_{1}\left(p_{2}(1)\right)=p_{1}(3)=2} \\
1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow \\
3 & 2 & 1
\end{array}\right) \\
{\left[p_{1} \circ p_{2}\right](2)=p_{1}\left(p_{2}(2)\right)=p_{1}(1)=1} \\
{\left[p_{1} \circ p_{2}\right](3)=p_{1}\left(p_{2}(3)\right)=p_{1}(2)=3}
\end{gathered}
$$

Multiplication table

Table containing the result of the operation for all possible ordered pairs of the set. The multiplication table highlights the structure of the group.

All elements of G must appear in each row / column.

If the table has reflection symmetry across the diagonal, then G is Abelian.

Different groups with the same table have the same structure.

Subgroups

If G is a group and S a nonempty subset of G such that:

- S is closed under multiplication
- S is closed with respect to inverses

Then S is itself a group and it is called a subgroup of G written as $S \subset G$.

Every group G has two trivial subgroups: the group G itself and $\{e\}$. All other subgroups are called proper subgroups.

All subgroups S of a group G share, at least, the identity e

The symmetry group of an equilateral triangle

An equilateral triangle has the six symmetry operations of the $C_{3 v}$ group

In 3D, the plane containing the triangle is a reflection plane, the C_{3} axis becomes also a S_{3} axis, and there are 3 additional C_{2} rotation axes in the plane. The full symmetry group in 3 D is $\mathrm{D}_{3 \mathrm{~h}}$ with $h=12$.

The structure of $\mathrm{C}_{3 \mathrm{v}}$

	E	C_{3}	$\mathrm{C}_{3}{ }^{2}$	$\boldsymbol{\sigma}_{\mathbf{1}}$	$\boldsymbol{\sigma}_{\mathbf{2}}$	$\boldsymbol{\sigma}_{3}$
\mathbf{E}	E	C_{3}	$\mathrm{C}_{3}{ }^{2}$	σ_{1}	σ_{2}	σ_{3}
\mathbf{C}_{3}	C_{3}	$\mathrm{C}_{3}{ }^{2}$	E	σ_{3}	σ_{1}	σ_{2}
$\mathbf{C}_{3}{ }^{2}$	$\mathrm{C}_{3}{ }^{2}$	E	C_{3}	σ_{2}	σ_{3}	σ_{1}
$\boldsymbol{\sigma}_{1}$	σ_{1}	σ_{2}	σ_{3}	E	C_{3}	$\mathrm{C}_{3}{ }^{2}$
$\boldsymbol{\sigma}_{\mathbf{2}}$	σ_{2}	σ_{3}	σ_{1}	$\mathrm{C}_{3}{ }^{2}$	E	C_{3}
$\boldsymbol{\sigma}_{3}$	σ_{3}	σ_{1}	σ_{2}	C_{3}	$\mathrm{C}_{3}{ }^{2}$	E

Proper subgroups

$C_{3}=\left\{\mathrm{E}, \mathrm{C}_{3}, \mathrm{C}_{3}{ }^{2}\right\}$
$C_{s}=\left\{E, \sigma_{1}\right\}$
$C_{s}{ }^{\prime}=\left\{E, \sigma_{2}\right\}$
all 4 proper subgroups
$C_{s}{ }^{\prime \prime}=\left\{\mathrm{E}, \sigma_{3}\right\}$
$C_{3 v}$ is a non-commutative group e.g. $\quad C_{3} \sigma_{1}=\sigma_{3}$

$$
\sigma_{1} C_{3}=\sigma_{2}
$$

C_{3} and σ_{1} are a set of generators for $\mathrm{C}_{3 \mathrm{v}}$:

$$
\begin{aligned}
& C_{3}{ }^{2}=C_{3} C_{3} \\
& E=C_{3} C_{3} C_{3}=\sigma_{1} \sigma_{1} \\
& \sigma_{2}=C_{3}{ }^{2} \sigma_{1}=C_{3} C_{3} \sigma_{1} \\
& \sigma_{3}=C_{3} \sigma_{1}
\end{aligned}
$$

$C_{3 v}$ as a direct product:

$$
C_{3 v}=C_{3} \otimes C_{s}
$$

where $(\mathrm{g}, \mathrm{h})=\mathrm{gh}$

Permutations of a set

A permutation of a set A is a bijective function from A to A :

$$
p_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
\downarrow & \downarrow & \downarrow \\
3 & 2 & 1
\end{array}\right)
$$

The composition of two permutations $p_{2}{ }^{\circ} p_{1}$ is also a permutation. Two permutations are equal if and only if $p_{1}(x)=p_{2}(x)$ for every $x \in A$.

Symmetric group S_{n}

The set of all permutations of a set A with n elements together with the operation $p_{r}{ }^{\circ} p_{s}$ of permutation composition, is a group S_{n} of order n ! called the symmetric group on n elements.

$$
\begin{array}{lll}
\varepsilon=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) & p_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) & p_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \\
p_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) & p_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) & p_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
\end{array}
$$

Identity: $\quad \varepsilon \circ p_{n}=p_{n} \circ \varepsilon=p_{n}$
Inverse: $\quad p_{n}^{-1} \circ p_{n}=p_{n} \circ p_{n}^{-1}=\varepsilon$

$\mathbf{S}_{\mathbf{3}}$	$\boldsymbol{\varepsilon}$	$\mathbf{p}_{\mathbf{1}}$	$\mathbf{p}_{\mathbf{2}}$	$\mathbf{p}_{\mathbf{3}}$	$\mathbf{p}_{\mathbf{4}}$	$\mathbf{p}_{\mathbf{5}}$
$\boldsymbol{\varepsilon}$	$\boldsymbol{\varepsilon}$	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
$\mathbf{p}_{\mathbf{1}}$	p_{1}	$\boldsymbol{\varepsilon}$	p_{3}	p_{2}	p_{5}	p_{4}
$\mathbf{p}_{\mathbf{2}}$	p_{2}	p_{5}	p_{4}	p_{1}	$\boldsymbol{\varepsilon}$	p_{3}
$\mathbf{p}_{\mathbf{3}}$	p_{3}	p_{4}	p_{5}	$\boldsymbol{\varepsilon}$	p_{1}	p_{2}
$\mathbf{p}_{\mathbf{4}}$	p_{4}	p_{3}	$\boldsymbol{\varepsilon}$	p_{5}	p_{2}	p_{1}
$\mathbf{p}_{\mathbf{5}}$	p_{5}	p_{2}	p_{1}	p_{4}	p_{3}	$\boldsymbol{\varepsilon}$

Group homomorphisms

If G and H are groups, a homomorphism from G to H is a function $f: G \rightarrow H$ such that for any two elements $a, b \in G$

$$
f(a b)=f(a) f(b)
$$

If there exists an homomorphism from G onto H, we say H is an homomorphic image of G . Homomorphic images preserve some features of the structure of the original group.

Why are homomorphisms interesting

Homomorphisms are one of the key aspects in group theory since they allow us to discard aspects of a group while keeping those of interest for a given problem

Symmetry group of the square $\left(\mathrm{D}_{4}\right)$:

Group of permutations of the diagonals of the square:
$S_{2}=\{(a, b),(b, a)\}$

S_{2} is a homomorphic image of D_{4} where only the information about the motions of the diagonals of the square under the operations of D_{4} are retained.

Group isomorphisms

Let G_{1} and G_{2} be groups. A bijective function $f: G_{1} \rightarrow G_{2}$ such that for any two elements $a, b \in G_{1}$

$$
f(a b)=f(a) f(b)
$$

is said to be an isomorphism from G_{1} to G_{2} and the two groups are said to be isomorphic: $G_{1} \cong G_{2}$.

All isomorphic groups share the same structure, and from an algebraic point of view they are all representatives of the same abstract group.

The cyclic group of 3 elements

There is only one possible multiplication table for a group with 3 elements, so that all order 3 groups are isomorphic between them.
$\mathbb{Z}_{2}=\{0,1,2\}$ with addition modulo 2

	0	1	2
$\mathbf{0}$	0	1	2
$\mathbf{1}$	1	2	0
2	2	0	1

	$s=\left(\begin{array}{cc} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right)$	$c=\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$	
	E	B	C
A	A	B	C
B	B	C	A
C	C	A	B

$Z_{3}=\left\{a, a^{2}, a^{3}=e\right\}$| Z_{3} | \mathbf{e} | \mathbf{a} | a^{2} | |
| :---: | :---: | :---: | :---: | :---: |
| | \mathbf{e} | e | a | a^{2} |
| | \boldsymbol{a} | a | a^{2} | e |
| | a^{2} | a^{2} | e | a |

All three groups have exactly the same structure: they are isomporphic to Z_{3}

	\mathbf{E}	\mathbf{C}_{3}	$\mathbf{C}_{3}{ }^{2}$
\mathbf{E}	\mathbf{E}	C_{3}	$\mathrm{C}_{3}{ }^{2}$
\mathbf{C}_{3}	C_{3}	$\mathrm{C}_{3}{ }^{2}$	E
$\mathbf{C}_{3}{ }^{2}$	$\mathrm{C}_{3}{ }^{2}$	E	C_{3}

Cayley's Theorem

Every group is isomorphic to a group of permutations.

Arthur Cayley (1821-1895)

Using the concept of isomorphism it has been possible to classify finite groups into a few families and to find out the number of different (non isomorphic) finite groups of a given order

Order n	\# of groups	Abelian	Non- Abelian
1	1	1	0
2	1	1	0
3	1	1	0
4	2	2	0
5	1	1	0
6	2	1	1
7	1	1	0
8	5	3	2
9	2	2	0
10	2	1	1
11	1	1	0
12	5	2	3

Abstract 4-element groups

There are only two fundamentally different groups with 4 elements.

V: Klein four-group

$$
<a, b \mid a^{2}=b^{2}=(a b)^{2}=e>
$$

2D: symmetry group of a rectangle or a rhombus $\left\{\mathrm{E}, \mathrm{C}_{2}, \sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}\right\}$

\mathbf{V}	\mathbf{e}	\mathbf{a}	\mathbf{b}	$\mathbf{a b}$
\mathbf{e}	\mathbf{e}	\mathbf{a}	\mathbf{b}	$\mathbf{a b}$
\mathbf{a}	\mathbf{a}	\mathbf{e}	$\mathbf{a b}$	\mathbf{b}
\mathbf{b}	\mathbf{b}	$\mathbf{a b}$	\mathbf{e}	\mathbf{a}
\mathbf{c}	$\mathbf{a b}$	\mathbf{b}	\mathbf{a}	\mathbf{e}

3D: $C_{2 v}=\left\{E_{2}, C_{2}, \sigma_{v}, \sigma_{v}^{\prime}\right\}$
$C_{2 h}=\left\{E, C_{2}, \sigma_{h}, i\right\}$
$\mathrm{D}_{2}=\left\{\mathrm{E}, \mathrm{C}_{2(\mathrm{x})}, \mathrm{C}_{2(\mathrm{y})}, \mathrm{C}_{2(\mathrm{z})}\right\}$

\mathbf{Z}_{4}	\mathbf{e}	\mathbf{a}	\mathbf{a}^{2}	\mathbf{a}^{3}
\mathbf{e}	\mathbf{e}	\mathbf{a}	\mathbf{a}^{2}	\mathbf{a}^{3}
\mathbf{a}	\mathbf{a}	\mathbf{a}^{2}	\mathbf{a}^{3}	\mathbf{e}
\mathbf{a}^{2}	\mathbf{a}^{2}	\mathbf{a}^{3}	\mathbf{e}	\mathbf{a}
\mathbf{a}^{3}	\mathbf{a}^{3}	\mathbf{e}	\mathbf{a}	\mathbf{a}^{2}

Z_{4} : Cyclic group of order 4

$$
<a \mid a^{4}=e>
$$

Symmetry group of fourfold rotations

$$
C_{4}=\left\{E, C_{4}, C_{4}{ }^{2}=C_{2}, C_{4}{ }^{3}\right\}
$$

Conjugate elements

For $\mathrm{a} \in \mathrm{G}$, any element $\mathrm{b}=\mathrm{xax}^{-1}$ where $\mathrm{x} \in \mathrm{G}$ is said to be conjugate of a .

The relation $\mathrm{a} \sim \mathrm{b}$ (a is conjugate of b) partitions G into conjugacy classes (the conjugacy class of a is the set of all elements $\mathrm{b}=\mathrm{xax}^{-1}$)

Subgroups do not partition a group (they must share, at least, the identity E)

Conjugacy classes contain "similar" elements

Normal subgroups

Let N be a subgroup of a group G . N is called a normal subgroup of G if it is closed with respect to conjugates, that is, if

$$
\forall a \in N \text { and } \forall x \in G \text { then } x^{-1} \in N
$$

Conjugacy classes of $\mathrm{C}_{3 \mathrm{v}}$

$C_{3}=\left\{E, C_{3}, C_{3}{ }^{2}\right\}$ is a normal subgroup of $C_{3 v}$ since it is closed with respect to conjugates
$\mathrm{C}_{\mathrm{s}}(1)=\left\{\mathrm{E}, \sigma_{1}\right\}$ is not a normal subgroup since $\sigma_{1} \sim \sigma_{2}$ and $\sigma_{1} \sim \sigma_{3}$

Any group G has, at least, two trivial normal subgroups, $\{\mathrm{E}\}$ and G itself.

The fundamental homomorphism theorem

The FHT states that all homomorphic images of a group G are isomorphic to a quotient group G/N of G.

Since there are only three normal subgroups in $C_{3 v}$ we can have, up to isomorphism, only three different homomorphic images of $\mathrm{C}_{3 \mathrm{v}}$.

