SHAPE

Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools

User's Manual

Version 2.1, March 2013

Miquel Llunell,[†] David Casanova, Jordi Cirera, Pere Alemany and Santiago Alvarez

Departament de Química Física, Departament de Química Inorgànica, and Institut de Química Teòrica i Computacional - Universitat de Barcelona

[†] e-mail: llunell@ub.edu

TABLE OF CONTENTS

About SHAPE	3
Using SHAPE	3
Standard input file	3
Reference polyhedra	4
Input using an external atomic coordinates file	5
Output files	6
Minimal distortion paths	6
Selecting structures with stereochemical criteria	6
User-defined reference shapes	7
Acknowledgments	7
List of reference shapes	8
File extensions	11
Optional keywords	12
Examples and sample files	14

About **SHAPE**

SHAPE calculates continuous shape measures (CShM's) of a set of points (e.g. atomic positions) relative to the vertices of ideal reference polygons or polyhedra (referred in general as "polyhedra" from here on for simplicity), either centered or non centered. The non centered polyhedra are intended to represent structures of clusters without a central atom, whereas centered polyhedra typically represent the coordination sphere (vertices) of a central atom. Throughout this manual we will indistinctly refer to vertices and atoms as synonims. **SHAPE** also calculates deviations from minimal distortion paths and polyhedral interconversion generalized coordinates. This program is based on the algorithm described by Pinsky and Avnir for the calculation of continuous shape measures, and on the definitions of minimal distortion paths and generalized interconversion coordinates. For more information see the following references:

- Continuous shape measures algorithm: M. Pinsky, D. Avnir. Inorg. Chem., 37, 5575 (1998).
- *Minimal distortion paths*: D. Casanova, J. Cirera, M. Llunell, P. Alemany, D. Avnir, S. Alvarez. J. Am. Chem. Soc., **126**, 1755-1763 (2004).
- Generalized interconversion coordinates: J. Cirera, E. Ruiz, S. Alvarez. Chem. Eur. J., **12**, 3162 (2006).

It must be noticed that the algorithm used by **SHAPE** does not distinguish the two enantiomers of a chiral shape. Therefore, whenever a chiral reference polyhedron is used, the resulting shape measures may not refer to that specific polyhedron but to its enantiomer.

Using **SHAPE**

To run the program for calculating shape measures you must simply type

shape name[.dat]

assuming the executable has the name "shape" and the input data is in a file *name*.dat (the file name can be given with or without extension). The program will write the results in the *name*.tab file and additional output files as required by optional keywords.

Alternatively, you may inquire the codes that identify the n-vertex reference polyhedra by typing

shape +[n]

If the number of vertices is not given, **SHAPE** gives a list of all available reference polyhedra.

To obtain a list of optional keywords type

shape -h

Standard Input File (See Example 1 for a sample input file)

The input file must have the extension .dat (e.g.: *name*.dat), and a name not exceeding 40 characters. It may contain at any position blank lines or comment lines starting by "!". The

program reads all other lines in free format, allowing for any number of blank spaces between the data, and any number of digits for numerical data.

The input file may contain the following data (fields 1-3 are optional, while field 6 can be omitted if a keyword for reading an external coordinates file is used).

- 1• Title line (up to 80 characters) indicated by the '\$' symbol in the first column.
- 2• Optional comment lines, recognized by the "!" symbol in the first column, allowed at any position of the input file.
- 3• Keywords (one line for each keyword)
- 4• Size of the polyhedron (two integer parameters):
 - Number of vertices

- Position of the central atom in the coordinates list (0 if there is no central atom); it must be the same for all the structures.

- 5• Codes of the reference polyhedra chosen (up to 12). These codes can be found in a table below, or can be obtained on screen by typing the symbol "+" when prompted for the input file name (all polyhedra), or "+n" (only polyhedra with n vertices).
- 6• One data set for each structure to be analyzed that comprises:
 - A label for the structure with up to 15 characters (e.g., the refcode of a CSD structure).
 - One line per atom containing a label with up to 4 characters (e.g., an atomic symbol) and cartesian coordinates.

Reference Polyhedra

The ideal geometries of some 90 reference polyhedra are internally defined in **SHAPE**, and identified by acronyms analogous to those defined by IUPAC for some of them. Those geometries meet the following criteria: (i) Regular and semiregular reference polyhedra have all edges of the same length and are spherical (i.e., their vertices are equidistant to the geometric center); this includes the Platonic solids, the prisms and the antiprisms, but not the bipyramids. (ii) For some polyhedra two or more alternative reference shapes are provided, e.g., a *spherical* version with all center-to-vertex distances identical (best suited for coordination polyhedra), a Johnson version with all edges identical (best suited for clusters or boranes), whose acronym starts with a capital J, and a polyhedron with vacant positions (whose acronyms start with a lower case v). More information about reference shapes other than regular polyhedra can be found in our publications:

- Four vertex polyhedra: J. Cirera, P. Alemany, S. Alvarez. Chem. Eur. J. 10, 190 (2004).
- Five vertex polyhedra: S. Alvarez, M. Llunell. J. Chem. Soc., Dalton Trans. 3288 (2000).
- Six vertex polyhedra: S. Alvarez, D. Avnir, M. Llunell, M. Pinsky. New J. Chem. 26, 996 (2002).
- Seven vertex polyhedra: D. Casanova, P. Alemany, J. M. Bofill, S. Alvarez. Chem. Eur. J. 9, 1281 (2003).
- Eight vertex polyhedra: D. Casanova, M. Llunell, P. Alemany, S. Alvarez. Chem. Eur. J. 11, 1479 (2005).

- Nine vertex polyhedra: A. Ruiz-Martínez, D. Casanova, S. Alvarez. Chem. Eur. J. 14, 1291 (2008); Dalton Trans., 2583 (2008)
- Ten vertex polyhedra: A. Ruiz-Martínez, D. Casanova, S. Alvarez. Chem. Eur. J. 15, 7470 (2009).
- Twelve, Twenty and Sixty vertex polyhedra: J. Echeverría, D. Casanova, M. Llunell, P. Alemany, S. Alvarez, Chem. Commun. 2717 (2008); S. Alvarez, Inorg. Chim. Acta 363, 4392 (2010).
- *Cubic Lattices*: J. Echeverría, D. Casanova, M. Llunell, P. Alemany, S. Alvarez, *Chem. Commun.* 2717 (2008).
- Ill-defined coordination numbers and association-dissociation paths: A. Ruiz-Martínez, D. Casanova, S. Alvarez. Chem. Eur. J. 16, 6567 (2010).
- Reviews: S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir. Coord. Chem. Rev. 249, 1693 (2005); S. Alvarez, E. Ruiz, in Supramolecular Chemistry, From Molecules to Nanomaterials, J. W. Steed, P. A. Gale, eds., John Wiley & Sons, Chichester, UK, Vol. 5, 1993-2044 (2012).

Input Using an External Atomic Coordinates File

SHAPE is able to handle a large number of structures using atomic coordinate files generated by other programs or downloaded from the Cambridge Structural Database. To use such coordinate files you only need to include before the first numerical data line a keyword that indicates the file type (%conquest or %external) and the name of the coordinates file to be used (optional). In such cases, no coordinates are required in the input file. The user must make sure that all the required data files are in the same directory from which the program is called.

%conquest

With this keyword, **SHAPE** fetches the coordinates from a file with the extension .cor, generated by the CSD ConQuest program. Be sure to check the "orthogonal coordinates" and "hit fragment only" options when exporting the coordinates from within ConQuest; the search fragment must have only the atoms corresponding to the vertices and center of the polyhedron. See Example 2.

- **NEW** - With this option, the output .tab file includes the refcode and the label of the central atom for each structure, allowing to distinguish crystallographicaly non equivalent fragments within the same crystal structure.

%external

With this keyword, **SHAPE** fetches the coordinates from a file with the extension .shp, with the same format as the item 6 in the .dat file, in which blank and comment lines are also allowed (see Example 3 for a sample file).

If the name of the .cor or .shp file is not specified, **SHAPE** searches a file with the same name as the data file. If the name of the coordinates file is specified, it can go with or without extension (i.e., both %conquest *name* and %conquest *name.cor* are valid).

Output Files

SHAPE writes in a file with the .tab extension and the same root as the input (.dat) file. Other output files are generated when special options are activated (see the "Optional Keywords" and "File Extensions" sections below).

Minimal Distortion Paths

The stereochemistry of structures intermediate between two reference shapes can be characterized by comparison to the minimal distortion path between those two shapes. **SHAPE** calculates the deviation from the minimal distortion path and the generalized coordinate along that path when the %path keyword is included. In that case only two reference shapes can be selected (see Example 5). Since generalized coordinates are meaningful only for those structures that fall along the minimal distortion path, the values given should be taken only as approximate for structures that significantly deviate from that path. For that reason, only generalized coordinates for structures that deviate less than a threshold value from the minimal distortion path are given in the output (.tab) file. The default threshold is set internally at 10%, but can be modified by the user with the help of the %maxdev keyword.

- **NEW** - With the %path option, version 2.1 generates a set of shape measures relative to the two ideal polyhedra chosen (.pth file), that can be used to represent the minimal distortion pathway in a shape map.

- **NEW** - The combined use of the %path and %test keywords generates an .xyz file with the coordinates of 21 ideal structures along the minimal distortion pathway, that can be used to make a movie of the interconversion of the two ideal polyhedra (see example 14). In that case, the .tab file is not generated.

Selecting Structures with Stereochemical Criteria

A set of structures can be filtered, discarding those that do not meet one of three stereochemical criteria, and the filtered results are written in the *name*.flt (text) and *name*.flt.csv (table) files. The applicable stereochemical criteria are: (i) CShM relative to a reference polyhedron below (or above) a chosen threshold (activated with the %maxcsm and %mincsm keywords, respectively), (ii) deviation from a minimal distortion pathway smaller or larger than a chosen value (%maxdev and %mindev keywords, respectively), and (iii) generalized coordinate along a minimal distortion pathway within a certain range (%mingco and %maxgco keywords). **SHAPE** generates the usual output file for all structures (.tab file), together with a file that contains only the filtered structures (.flt file). See Examples 6 and 7.

User-Defined Reference Shapes

SHAPE can also calculate measures relative to a user-defined reference shape. You only need to prepare a *name*.ref file with the coordinates of your reference shapes (as many as you wish) and use 0 in the input file as the code for each user-defined reference polyhedron (see Example 8). The contents of a .ref file are as follows:

- Abbreviation for the name of the ideal shape (up to 12 characters).

- A line with a more detailed description of the reference shape (up to 50 characters).

- Symmetry label (up to 5 characters)

- Coordinates of the atoms occupying the vertices, followed by those of the central atom if present. Note that in the *name*.ref files the central atom (if present) **must always be at the end of the list of coordinates**, regardless of how are the coordinates of the problem structures arranged in the *name*.dat, *name*.cor or *name*.shp files.

Acknowledgments

The present expanded version of **SHAPE** would have not been possible without the collaboration of David Avnir, Mark Pinsky and Josep M. Bofill in the development of the previous versions. The authors and users of **SHAPE** are in debt with them.

Vertices	Code	Label	Shape	Symmetry
2	1	L-2	Linear	$D_{\infty h}$
	2	vT-2	Divacant tetrahedron (V-shape, 109.47°)	C _{2v}
	3	vOC-2	Tetravacant octahedron (L-shape, 90°)	C_{2v}^{2v}
3	1	TP-3	Trigonal planar	D _{3h}
	2	vT-3	Pyramid‡ (vacant tetrahedron)	C _{3v}
	3	fac-vOC-3	fac-Trivacant octahedron	C _{3v}
	4	mer-vOC-3	mer-Trivacant octahedron (T-shape)	C _{2v}
4	1	SP-4	Square	D_{4h}
	2	T-4	Tetrahedron	T _d
	3	SS-4	Seesaw or sawhorse ^{\ddagger} (<i>cis</i> -divacant octahedron)	C_{2v}
	4	vTBPY-4	Axially vacant trigonal bipyramid	C _{3v}
5	1	PP-5	Pentagon	D_{5h}
	2	vOC-5	Vacant octahedron [‡] (Johnson square pyramid, J1)	C_{4v}
	3	TBPY-5	Trigonal bipyramid	D_{3h}
	4	SPY-5	Square pyramid [§]	C_{4v}
	5	JTBPY-5	Johnson trigonal bipyramid (J12)	D_{3h}
6	1	HP-6	Hexagon	D_{6h}
	2	PPY-6	Pentagonal pyramid	C _{5v}
	3	OC-6	Octahedron	O_h
	4	TPR-6	Trigonal prism	D_{3h}
	5	JPPY-5	Johnson pentagonal pyramid (J2)	C _{5v}
7	1	HP-7	Heptagon	D_{7h}
	2	HPY-7	Hexagonal pyramid	C _{6v}
	3	PBPY-7	Pentagonal bipyramid	D_{5h}
	4	COC-7	Capped octahedron *	C _{3v}
	5	CTPR-7	Capped trigonal prism *	C_{2v}
	6	JPBPY-7	Johnson pentagonal bipyramid (J13)	$\mathrm{D}_{5\mathrm{h}}$
	7	JETPY-7	Elongated triangular pyramid (J7)	C _{3v}
8	1	OP-8	Octagon	$\mathrm{D_{8h}}$
	2	HPY-8	Heptagonal pyramid	C_{7v}
	3	HBPY-8	Hexagonal bipyramid	D_{6h}
	4	CU-8	Cube	O_h
	5	SAPR-8	Square antiprism	D_{4d}
	6	TDD-8	Triangular dodecahedron	D _{2d}
	7	JGBF-8	Johnson - Gyrobifastigium (J26)	D _{2d}
	8	JETBPY-8	Johnson - Elongated triangular bipyramid (J14)	D_{3h}
	9	JBTP-8	Johnson - Biaugmented trigonal prism (J50)	C _{2v}
	10	BTPR-8	Biaugmented trigonal prism	C _{2v}
	11	JSD-8	Snub disphenoid (J84)	D _{2d}
	12	TT-8	Triakis tetrahedron	T _d
	13	ETBPY-8	Elongated trigonal bipyramid (see 8)	D _{2h}

LIST OF REFERENCE SHAPES

Vertices	Code	e Label	Shape S	Symmetry
9	1	EP-9	Enneagon	D _{9h}
	2	OPY-9	Octagonal pyramid	C _{8v}
	3	HBPY-9	Heptagonal bipyramid	D_{7h}
	4	JTC-9	Triangular cupola (J3) = trivacant cuboctahedron	C _{3v}
	5	JCCU-9	Capped cube (Elongated square pyramid, J8)	C_{4v}
	6	CCU-9	Capped cube	C_{4v}
	7	JCSAPR-9	Capped sq. antiprism (Gyroelongated square pyramid J10)	C_{4v}
	8	CSAPR-9	Capped square antiprism	C_{4v}
	9	JTCTPR-9	Tricapped trigonal prism (J51)	D _{3h}
	10	TCTPR-9	Tricapped trigonal prism	D _{3h}
	11	JTDIC-9	Tridiminished icosahedron (J63)	C _{3v}
	12	HH-9	Hula-hoop	C _{2v}
	13	MFF-9	Muffin	Cs
10	1	DP-10	Decagon	D _{10h}
	2	EPY-10	Enneagonal pyramid	C _{9v}
	3	OBPY-10	Octagonal bipyramid	D _{8h}
	4	PPR-10	Pentagonal prism	D _{5h}
	5	PAPR-10	Pentagonal antiprism	D _{5d}
	6	JBCCU-10	Bicapped cube (Elongated square bipyramid J15)	D_{4h}
	7	JBCSAPR-10	Bicapped square antiprism (Gyroelongated square bipyramid J	17) D _{4d}
	8	JMBIC-10	Metabidiminished icosahedron (J62)	C_{2v}
	9	JATDI-10	Augmented tridiminished icosahedron (J64)	C _{3v}
	10	JSPC-10	Sphenocorona (J87)	C _{2v}
	11	SDD-10	Staggered dodecahedron (2:6:2) #	D_2
	12	TD-10	Tetradecahedron (2:6:2)	C_{2v}
	13	HD-10	Hexadecahedron (2:6:2, or 1:4:4:1)	D_{4h}
11	1	HP-11	Hendecagon	D _{11h}
	2	DPY-11	Decagonal pyramid	C _{10v}
	3	EBPY-11	Enneagonal bipyramid	D _{9h}
	4	JCPPR-11	Capped pent. Prism (Elongated pentagonal pyramid J9)	C _{5v}
	5	JCPAPR-11	Capped pent. antiprism (Gyroelongated pentagonal pyramid J1	1) C _{5v}
	6	JAPPR-11	Augmented pentagonal prism (J52)	C _{2v}
	7	JASPC-11	Augmented sphenocorona (J87)	C _s

Vertices	Code	Label	Shape	Symmetry
12	1	DP-12	Dodecagon	D _{12h}
	2	HPY-12	Hendecagonal pyramid	C _{11v}
	3	DBPY-12	Decagonal bipyramid	D _{10h}
	4	HPR-12	Hexagonal prism	D_{6h}
	5	HAPR-12	Hexagonal antiprism	D _{6d}
	6	TT-12	Truncated tetrahedron	T _d
	7	COC-12	Cuboctahedron	O_{h}
	8	ACOC-12	Anticuboctahedron (Triangular orthobicupola J27)	D_{3h}
	9	IC-12	Icosahedron	I_{h}
	10	JSC-12	Square cupola (J4)	C_{4v}
	11	JEPBPY-12	Elongated pentagonal bipyramid (J16)	D _{6h}
	12	JBAPPR-12	Biaugmented pentagonal prism (J53)	C_{2v}
	13	JSPMC-12	Sphenomegacorona (J88)	Cs
20	1	DD-20	Dodecahedron [†]	I _h
24	1	TCU-24	Truncated cube	O _h
	2	TOC-24	Truncated octahedron	O_{h}
48	1	TCOC-48	Truncated cuboctahedron	O_{h}
60	1	TRIC-60	Truncated icosahedron (fullerene)	I _h

* Non regular polyhedron, for definition of reference shape see references above.

[‡] A regular polyhedron with one or two vertices removed.

[§] Spherical distribution of vertices with mass center at the origin (apical-basal bond angles of 104.45°).

[†] For polyhedra with more than 12 vertices the calculation times may be unpractical, and the user is only allowed to set manually the equivalence between vertices of the problem and reference shapes by means of the %fixperm keyword. [#] This is a chiral polyhedron; see cautionary note in the "About SHAPE" section.

File Extensions

<i>name</i> .dat	Input file.
name.cor	Name of the coordinates file generated by CSD's ConQuest, specified with the
	%conquest keyword. Each structure is identified in the output by the refcode
	and the label of the central atom if present.
<i>name</i> .shp	User-generated coordinates file, optional name specified with the %external
	keyword.
name.ide	User-defined coordinates for a non-standard reference shape, replaced in
	SHAPE 2.1 by <i>name</i> .ref. Old files with the .ide extension used with
	version 2.0 and are still recognized when the %reference (earlier %ideal)
	keyword is used.
<i>name</i> .tab	Output file with shape measures, path deviations and generalized coordinates.
<i>name</i> .tab.csv	Table of shape measures, path deviations and generalized coordinates in csv
	(comma separated values) format.
<i>name</i> .flt	Contains the results for only those structures filtered according to shape
	measure, path deviation function and/or generalized coordinate criteria (see
	%mincsm, %maxcsm, %mindev, %maxdev, %mingco and %maxgco
	keywords).
name.flt.csv	Tabular (csv format) version of <i>name</i> .flt generated to facilitate data transfer to
	datasheets or plotting and statistical software.
<i>name</i> .pth	- NEW - Gives a set of points for drawing the minimal distortion pathway (in csv format).
<i>name</i> .out	Gives the calculated CShM's and the coordinates of each problem structure and
	of the closest reference polyhedra, generated when the %fullout keyword is
	included in the input file before the numerical data (see Example 4). Note that
	this option may substantially slow down the calculations.
<i>name</i> .ref	Contains the coordinates for a user-defined reference shape, required with the
	%reference keyword.
ID.xyz	Coordinates of the reference polyhedron with acronym ID (see List of
	Reference Shapes), generated when the %test keyword is used. Readable by
	programs such as Crystal Maker and Mercury.
name.tst	Geometries of reference shapes (coordinates, distances and angles), generated
	by the %test keyword.

Optional Keywords §

Keyword	Argument	Description
%conques	st [<i>name</i> .cor]	Reads the atomic coordinates from a <i>name</i> .cor file generated by
%evternal	[nama shn]	Reads the atomic coordinates from an external name shn file
%fivnerm		Calculates the measures for a chosen pairing of vertices of the problem
mperm	7.	and ideal structures, rather than optimizing the shape measure for all
		and ideal structures, ratio than optimizing the shape measure for an possible pairings (see Examples $0, 12$). To use this option one must first
		check the ordering of the vertices in the reference shape by looking at the
		D_{XVZ} file generated with the %test keyword N can adopt one of the
		following values:
	N – _1	a vertex pairing is given by the user for each set of atomic coordinates
	N = -1	A vertex number for each atom is given right after its coordinates.
	N = 0	the vertices are taken in order of appearance in the list of coordinates.
	N = 0	exclusive of the central atom if present.
	N = 1	a vertex pairing is given only once for all the structures present in the
		input file, in a line appearing before the first set of atomic coordinates.
%fullout		Generates a <i>name</i> .out file containing the coordinates of the problem
		structures and of the closest reference polyhedra, the continuous shape
		measures and the optimal vertex pairing.
%ideal	file	This keyword was used in version 2.0 of SHAPE and is replaced in the
		new version by %reference. However, the program can properly handle
		input files with the old keyword.
%maxcsm	ı <i>y</i>	Generates output files name.flt and name.flt.csv with the shape
		measures for only those structures having at least one shape measure
		smaller than y (y is a real number). It is advisable to use this option with
		only one reference shape.
%maxdev	У	Generates name.flt and name.flt.csv files with the shape measures for
		only those structures having path deviation functions smaller or equal
		than y (more details as specified for %maxcsm).
%maxgco	У	Generates name.flt and name.flt.csv files with the shape measures for
		only those structures with generalized coordinates smaller than y (more
		details as specified for %maxcsm).
%mincsm	X	Generates <i>name</i> .flt and <i>name</i> .flt.csv files with the shape measures for
		only those structures with at least one shape measure larger than \boldsymbol{X} (more
		details as specified for %maxcsm). It is advisable to use this option
a <i>i</i>		with only one ideal shape.
%mindev	X	Generates <i>name</i> .flt and <i>name</i> .flt.csv files with the results for only those
		structures with path deviation functions larger or equal than x (more
0/		details as specified for %maxcsm).
%mingco	X	The program selects structures with shape measures, path deviation
		tunctions or generalized coordinates larger than a desired value X ,

respectively, and writes the filtered results to the *name*.flt and *name*.flt.csv files.

NOTE: The combined use of %maxxxx and %minxxx keywords allows one to select structures within a specific range (between x and y) of, e.g., generalized coordinates (see Examples 6 and 7). With those options, *name*.flt and *name*.flt.csv files are generated, containing the full output for the filtered structures and a table with only the numerical values in the csv (comma separated values) format, respectively.

%nosymbolIndicates that no atomic labels are included with the coordinates.%pathCalculates the *path deviation function* for the minimal distortion
interconversion path between two given polyhedra as well as the
generalized coordinate. Two and only two reference polyhedra should be
coded in the input file with this option. The path is assumed to go from
the first (0%) to the second (100%) reference shape specified in the input
file.

The generalized coordinate is given only for structures that deviate at most a 10% from the minimal distortion interconversion path. This threshold can be modified with the %maxdev keyword.

- %reference *file* Points to a *file*.ref file containing user-defined reference shapes. The name of the file must be specified only if it is different from that of the data file (see Example 8). This keyword replaces the %ideal keyword of version 2.0 of **SHAPE**, but the program can properly handle input files with the old keyword.
- %select *label* Performs shape measures only for the set of coordinates under the structure label specified and places the results in a file with the name *label*.

%stop N Calculates the shape measures for the first N structures only.

%test Generates a .tst file with the geometries of the reference shapes (coordinates, distances and angles), and one .xyz file for each ideal shape. The input file must specify the number of vertices and the code of the reference shapes, but no atomic coordinates are required (see Example 13).

%thrdev x This option is replaced in **SHAPE 2.1** by the %mindev and %maxdev keywords.

[§] Keywords must appear in the input file before the numerical data.

Shape

Examples and Sample Files

Example 1: Standard input file	15
Example 2: Atomic coordinates from a .cor file generated by CSD's ConQuest	16
Example 3: Input with external coordinates	17
Example 4: Use of the %fullout keyword	17
Example 5: Deviation from minimal distortion pathways	19
Example 6: Use of the %maxdev keyword	21
Example 7: Use of the %maxgco and %mingco keywords	23
Example 8: Use of a user-defined reference polyhedron	24
Example 9. Large polyhedra: specifying a vertex pairing with the %fixperm option	25
Example 10: Truncated Icosahedron	29
Examples 11 and 12: Other %fixperm options	31
Example 13: Getting coordinates of internally defined ideal shapes	34
Example 14: Generating coordinates of structures along a minimal distortion path	34

Example 1: Standard Input File

Calculate the CShM's of ML_4 fragments relative to two ideal structures: the square (code = 1) and the tetrahedron (code = 2).

Input file example01.dat

\$	PtL	4 structu	ires	
1	Liga	ands Met	al	
		4 5	5	
1	Tet	rahedron	Square	
		2	1	
AI	BOXI	Y		
	N	3.9023	7.5659	14.2563
	С	3.9912	8.8145	16.4883
	S	1.0864	9.0325	13.3242
	C1	1.4893	10.6356	16.0313
	Pt	2.7159	8.9642	15.0153
12	ABZLI	PT10		
1	Р	3.9891	1.7349	-5.9463
1	N	2.5932	-0.3213	-2.3836
1	N	3.9661	2.1385	-2.8787
1	C 1	2.6450	-1.1044	-5.4688
1	Pt	3.3098	0.6621	-4.0608
A	CACP	Г		
	0	0.6294	1.3760	-1.2703
	0 .	-0.6294	-1.3760	1.2703
	0 -	-1.7613	0.9024	0.3486
	0	1.7613	-0.9024	-0.3486
	Pt	0.0000	0.0000	0.0000

4	1		
2	1		
AB	YIXC		
Pt	2.7159	8.9642	15.0153
Ν	3.9023	7.5659	14.2563
С	3.9912	8.8145	16.4883
S	1.0864	9.0325	13.3242
C1	1.4893	10.6356	16.0313
AC	ACPT		
Pt	0.0000	0.0000	0.0000
0	0.6294	1.3760	-1.2703
0	-0.6294	-1.3760	1.2703
0	-1.7613	0.9024	0.3486
0	1.7613	-0.9024	-0.3486

This input file is equivalent:

Output file example01.tab

S H 2	APE	v2.1	Continuous Shape Measures calculation	
(C)	2013	Electronic C	Structure Group, Universitat de Barcelona ontact: llunell@ub.edu	

PtL4 structures

T-4 SP-4		2 Td 1 D4h	Tetrahedron Square	
Structure	[ML4	1	T -4	SP-4
ABOXIY	-	· ,	31.375,	0.970
ACACPT		,	33.440,	0.160

Example 2: Atomic coordinates from a .COT file generated by CSD's ConQuest

To generate the .cor file a search must be carried out in ConQuest in which only the atoms in the fragment to be analyzed are defined. A coordinates file is then generated with the results of the search ("Export entries as...") using the "Orthogonal" and "Hit Fragment Only" options.

Input file: example02.dat

```
%conquest coords2
4 1
1 2
```

Coordinates file obtained from ConQuest: coords2.cor

		. –		
DOSDAQ	**FRAG**	1		
Pd1	16.04450	0.00000	0.00000	1555011
N1H	17.11627	-1.46619	-0.92483	9655010
N1B	17.11627	1.46619	0.92483	3655010
N1J	14.97273	-1.46619	-0.92483	11555010
N1	14.97273	1.46619	0.92483	1555010
FUBWUU	**FRAG**	1		
Pt1	6.35325	1.50775	0.00000	1555001
N1E*	4.67365	2.63675	0.26075	6665002
N2	7.85296	1.80990	1.32660	1555016
N2E*	4.85354	1.20560	-1.32660	6665016
N1	8.03285	0.37875	-0.26075	1555002
LEGFOS	**FRAG**	1		
Cr1	5.47182	6.64300	6.21762	1555001
N2	3.90370	5.54292	7.02349	1555003
N1B	7.04319	5.53495	5.40674	3555002
N2B	3.90370	7.74308	7.02349	3555003
N1	7.04319	7.75105	5.40674	1555002
LEGFUY	**FRAG**	1		
Cr1	0.00000	0.00000	0.00000	1555001
N2	-1.92134	-0.79300	-0.22619	1555004
N2A	1.92134	0.79300	0.22619	2555004
N1A	-1.33328	1.09218	-1.23891	2555003
N1	1.33328	-1.09218	1.23891	1555003
LEGFUY	**FRAG**	2		
Cr2	13.08506	9.95142	5.14071	1555002
N4A*	14.56143	8.60497	5.79769	2766006
N5	13.16165	11.88734	5.96836	1555007
N5A*	13.00848	8.01551	4.31305	2766007
N4	11.60870	11.29788	4.48373	1555006

Comment: Notice that the last column in the coordinates file generated by ConQuest is neglected by **SHAPE**. Also the fragment number (e.g., **FRAG** 1) is disregarded.

Output file: example02.tab

SP-4 T-4	1 2	D4h Td	Square Tetrahedron	
Structure	[ML4]		SP-4	т-4
DOSDAQ	1 Pd1 ,		5.271,	36.847
FUBWUU	1 Pt1 ,		5.184,	36.789
LEGFOS	1 Cr1 ,		5.047,	36.698
LEGFUY	1 Cr1 ,		5.234,	36.822
LEGFUY	2 Cr2 ,		5.100,	36.733

Example 3: Input with external coordinates

Input file: example03.dat

1	keyword,	name of	coords.	file
8€	external	geor	netries	
4	1			
2	1			

External file: geometries.shp

ABOX	ΓY		
Pt	2.7159	8.9642	15.0153
N	3.9023	7.5659	14.2563
С	3.9912	8.8145	16.4883
S	1.0864	9.0325	13.3242
Cl	1.4893	10.6356	16.0313
ACACI	?Т		
Pt	0.0000	0.0000	0.0000
0	0.6294	1.3760	-1.2703
0	-0.6294	-1.3760	1.2703
0	-1.7613	0.9024	0.3486
0	1.7613	-0.9024	-0.3486

Output file as in example01.tab

Example 4: Use of the %fullout Option

Input file: example04.dat, as in Example 1 with the %fullout keyword added:

```
$ Example 4 - Four-coordinate complexes, %fullout option
%fullout
4 1
2 1
ABOXIY
Pt 2.7159 8.9642 15.0153
   3.9023 7.5659 14.2563
Ν
C 3.9912 8.8145 16.4883
   1.0864 9.0325 13.3242
S
Cl 1.4893 10.6356 16.0313
ACACPT
Pt 0.0000 0.0000 0.0000
0 0.6294 1.3760 -1.2703
0 -0.6294 -1.3760 1.2703
0 -1.7613 0.9024 0.3486
 0 1.7613 -0.9024 -0.3486
```

Output files: example04.tab (see example01.tab) and example04.out:

С	3.9912	8.8145	16.4883	
S	1.0864	9.0325	13.3242	
Cl	1.4893	10.6356	16.0313	
T 1	T 1 1		a a h u	21 27460
T-4	Ideal st	ructure	CSnM =	31.3/468
Pt	M T 1	2.0370	9.0025	12.0231
N		4.0461	8./082	13.9529
C		2.9073	8.13/5	16.5607
5	Ц3 Т 4	1.1/33	8.3606	14.2286
CI	Ц4	2.4214	10.7439	15.3500
SP_4	Ideal st	ructure	CShM =	0 96957
	M	2.6370	9,0025	15.0231
N	т.1	3.7673	7.4669	14.0426
C	T.2	1 02/1	8 9797	16 6570
e	т Л	4.0241	0.0254	12 2882
с 1	ш 4 т 3	1 5069	<i>3</i> .0234	16 0036
CI	сц	T.2000	10.3302	10.0020
Structure	2 []	יאריסעי		
D+			0 0000	
0	0.6204	1 2760	1 2702	
0	0.0294	1 2760	-1.2703	
0	-0.0294	-1.3700	1.2703	
0	-1.7013	0.9024	0.3480	
U	1./013	-0.9024	-0.3486	
T-4	Ideal st	ructure	CShM =	33.43969
Pt.	Μ	0.0000	0.0000	0.0000
0	T.1	0.3779	0.9502	-0.8463
0	T-2	-0.3779	-0.9502	0.8463
õ	T.3	-1.1497	0.6333	0.1977
õ	т.Л	1 1/07	-0 6333	_0 1977
U	тт	1.1191	-0.0333	-0.1977
SP-4	Ideal st	ructure	CShM =	0.15954
Pt	Μ	0.0000	0.0000	0.0000
0	L1	0.5669	1.4252	-1.2695
0	L3	-0.5669	-1.4252	1.2695
0	L2	-1.7245	0.9500	0.2965
0	 L4	1.7245	-0.9500	-0.2965
-		11.210		

Example 5: Deviation from a Minimal Distortion Pathway

Input file: example05.dat:

<pre>\$ Example 5 %path</pre>	5 — Six-coo	rdinate	complexes,	%path	option
62					
3 4					
BOYGOL					
S2	-3.02522	14.9846	54 5.5113	2	
Re1	-2.01859	15.1761	L2 3.4029	1	
S 3	-2.17289	12.8493	3.2663	6	
S 6	-3.39746	17.0259	3.6369	8	
S1	0.03863	14.8991	L6 4.4207	6	
S 5	-0.52591	16.5403	38 2.2254	5	
S4	-3.10277	14.7641	l1 1.3796	0	
BOYGOL10					
S4	-3.10243	14.7641	L1 1.3768	9	
Re1	-2.01775	15.1761	L2 3.3962	1	
S2	-3.02386	14.9846	54 5.5004	9	
S 3	-2.17209	12.8493	3.2599	4	
S1	0.03972	14.8991	4.4120	7	
S 6	-3.39657	17.0259	3.6298	3	
S 5	-0.52536	16.5403	38 2.2210	8	
BOZCAU					
S2	0.69939	1.5330	0 5.4463	6	
Mo1	-0.40113	1.7560)9 3.2112	9	
S 3	-1.78709	3.6740	03 4.0192	6	
S2B	-1.50164	1.5330	0.9762	3	
S1	1.40580	0.0865	2.6615	2	
S1B	-2.20805	0.0865	3.7610	7	
S3B	0.98484	3.6740	2.4033	3	
LIDKEO					
S 6	0.32602	15.1843	37 14.4270	2	
Zr1	2.69911	16.3978	38 15.0202	3	
S 5	1.53570	16.0008	31 17.3719	8	
S 3	5.20997	16.4201	L8 14.6075	6	
S4	2.88922	13.8191	L9 15.5689	0	
S2	2.48141	17.4262	23 12.7482	1	
S1	3.04257	18.7668	38 15.7963	3	
MARSIH					
S2	5.04452	0.5809	97 10.0432	1	
Til	4.61060	0.6154	1 7.5413	0	
S 3	5.75074	-1.6119	99 7.9560	8	
S 6	4.33426	-0.2034	12 5. 3472	9	
S 1	2.59925	-0.6533	8.4915	0	
S 5	6.54438	1.7590	09 6.9697	8	
S4	3.11547	2.4022	23 7.4781	.9	
MARSIH					
S2	5.04452	0.5809	97 10.0432	1	
Ti2	4.25297	-1.8157	75 9.9844	5	
S 3	5.75074	-1.6119	99 7.9560	8	
S 9	5.87017	-2.4768	31 11.5537	7	
S1	2.59925	-0.6533	8.4915	0	
S 8	3.91311	-4.1337	9.4235	7	
S 7	2.77452	-1.6891	L6 11.7893	2	
POJFOJ					
S2	0.81532	2.7245	4.2402	5	
Til	-0.20836	4.2597	76 5.9522	3	
S3	2.08147	5.2830	5.5406	3	
S9	-1.92082	2.7245	6.3430	6	
S1	-0.31827	5.5432	3.7403	5	
S 8	-1.78359	5.9519	6.4599	5	
S7	0.78176	3.8416	57 7.9779	4	

Output file: example05.tab:

Example 5 — Si	x-coordi	nate complex	xes, %path opt	tion			
OC-6 TPR-6	3 Oh 4 D3h	Octahedron Trigonal p	n prism				
Minimal distorsion path analysis: from OC-6 (0%) to TPR-6 (100%) Deviation threshold to calculate Generalized Coordinate: 10.0000							
Structure [ML6	1	OC-6	TPR-6	DevPath	GenCoord		
BOYGOL	,	12.011,	0.954,	7.2,	84.0		
BOYGOL10	,	12.012,	0.957,	7.2,	84.0		
BOZCAU	,	1.142,	11.245,	6.5,	25.4		
LIDKEO	,	10.707,	1.236,	5.5,	79.1		
MARSIH	,	0.993,	12.826,	10.6,	-		
MARSIH	,	1.105,	11.783,	8.1,	25.0		
POJFOJ	,	5.203,	5.085,	8.6,	54.6		

Comment: For the first fragment of structure MARSIH the generalized coordinate is omitted because it is calculated only for structures with a DevPath value smaller than a threshold of 10% set by default. That threshold can be modified by the user (see Example 6).

Results for plotting a shape map, file example05.csv:

Structure	,	OC-6,	TPR-6
BOYGOL	,	12.011,	0.954
BOYGOL10	,	12.012,	0.957
BOZCAU	,	1.142,	11.245
LIDKEO	,	10.707,	1.236
MARSIH	,	0.993,	12.826
MARSIH	,	1.105,	11.783
POJFOJ	,	5.203,	5.085

Minimal distortion pathway file: example05.pth :

OC-6 pth,	TPR-6 pth
16.737,	0.000
15.355,	0.035
14.002,	0.144
12.681,	0.329
11.398,	0.593
10.158,	0.940
8.966,	1.371
7.828,	1.890
6.748,	2.497
5.732,	3.195
4.785,	3.984
3.911,	4.865
3.116,	5.837
2.403,	6.901
1.777,	8.055
1.241,	9.298
0.798,	10.626
0.450,	12.038
0.201,	13.530
0.050,	15.097
0.000,	16.737

Example 6: Use of the %maxdev Keyword

In this example we select from the coordinates file nickel.cor those structures that deviate at most a 5% from the square-tetrahedron pathway.

Input file: example06.dat:

```
$ Example 6- Four coordinate Ni complexes, %maxdev option
! Atomic coordinates in file nickel.cor
! Writes results for structures that deviate at most
! a 5% from the tetrahedron-square pathway.
%conquest nickel
%path
%maxdev 5.0
4 1
1 2
```

ConQuest generated coordinates file: nickel.cor (only first lines shown):

	₽₽♪С	1		
ACIFNI	" " FRAG " "			
Nil	2.71219	2.81088	1.41507	1555010
P1	4.69038	2.60714	2.35529	1555012
C11	2.08358	0.76327	2.15287	1555001
P2	0.82300	2.98937	0.30206	1555013
C1	3.11326	4.57241	0.99635	1555002
ADUVOL	**FRAG**	1		
Ni1	6.37726	3.85616	10.65061	1555001
C1	8.04704	3.64539	9.74674	1555008
C12	6.42565	6.01430	10.27734	1555003
C22	4.70946	4.05219	11.58132	1555055
C11	6.31751	1.69381	10.91760	1555002
ASBRNI	**FRAG**	1		
Ni1	3.19481	1.63191	9.58172	1555001
P1	1.95029	-0.32618	9.47129	1555005
Br3	5.26621	0.96957	10.51781	1555004
Br1	1.88263	3.13514	10.85158	1555002
Br2	3.47447	2.28428	7.30800	1555003

Output file: example06.tab (only first lines shown):

```
_____
S H A P E v2.1 Continuous Shape Measures calculation
(c) 2013 Electronic Structure Group, Universitat de Barcelona
               Contact: llunell@ub.edu
_____
Example 6- Four coordinate Ni complexes, %maxdev option
              1 D4h
SP-4
                      Square
              2 Td
                     Tetrahedron
т-4
Minimal distorsion path analysis:
  from SP-4 (0%) to T-4 (100%)
Deviation threshold to calculate Generalized Coordinate: 5.000%
                SP-4T-4DevPath0.712,28.619,5.4,0.463,32.253,9.2,32.428,0.314,7.5,0.109,30.780,0.9,0.056,33.227,3.7,30.356,2.583,21.0,
Structure [ML4 ]
                                  T-4
                                         DevPath
                                                     GenCoord
ACTPNI 1 Ni1,
ADUVOL 1 Ni1,
                                                           _
ASBRNI 1 Ni1 ,
                                                           _
AWELET 1 Ni3,
                                                        5.4
AWELUJ 1 Ni1,
                                                         3.8
AZERAY 1 Ni1,
                                                           _
```

BAJWOZ	1	Ni1	,	28.722,	2.264,	16.4,	-
BAQZEY	1	Ni1	,	0.062,	33.375,	4.1,	4.0
BAVCEH	1	Ni1	,	0.050,	33.367,	3.7,	3.6
BAZRID	1	Ni1	,	0.035,	33.357,	3.1,	3.0
BAZRID	2	Ni2	,	0.243,	28.800,	0.1,	8.0
BAZSUR	1	Ni1	,	0.944,	33.963,	16.9,	-
BEFDIZ02	1	Ni1	,	1.025,	34.017,	17.7,	-
BEGDAT	1	Ni1	,	0.002,	33.335,	0.7,	0.7
BIPKER	1	Ni1	,	30.909,	1.126,	13.1,	-
BIVFOB	1	Ni1	,	0.464,	33.467,	11.3,	-
BONHIV	1	Ni1	,	0.995,	33.997,	17.4,	-
CABQUS	1	Ni1	,	0.093,	33.395,	5.1,	-
CADJEW	1	Ni1	,	33.353,	0.056,	3.9,	100.0
CADJEW	2	Ni2	,	33.343,	0.059,	4.0,	100.0

Filtered output file: example06.flt (only first lines shown):

S H A P E v2.1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu _____ Example 6- Four coordinate Ni complexes, %maxdev option SP-4 1 D4h Square T-42 Td Tetrahedron Minimal distorsion path analysis: from SP-4 (0%) to T-4 (100%) Filtered results Only structures within the following boundaries are given in this file: Path deviation function (%): 0.000 - 5.000 Generalized coordinate (%): 0.000 - 100.000

 Structure [ML4]
 SP-4
 T-4
 DevPath
 GenCoord

 AWELET
 1 Ni3
 0.109
 30.780
 0.9
 5.4

 AWELUJ
 1 Ni1
 0.056
 33.227
 3.7
 3.8

 BAQZEY
 1 Ni1
 0.062
 33.375
 4.1
 4.0

 BAVCEH
 1 Ni1
 0.050
 33.367
 3.7
 3.6

 BAZRID
 1 Ni1
 0.035
 33.357
 3.1
 3.0

 BAZRID
 2 Ni2
 0.243
 28.800
 0.1
 8.0

 BEGDAT
 1 Ni1
 0.002
 33.335
 0.7
 0.7

 CADJEW
 2 Ni2
 33.343
 0.056
 3.9
 100.0

 CADJEW
 2 Ni2
 33.343
 0.059
 4.0
 100.0

 CAVLIV
 1 Ni2
 0.014
 33.227
 1.7
 1.9
 9

 CEPXIF
 1 Ni1
 28.550
 0.4055
 1.9
 9
 9.6

 CILTTRIO3
 1 Ni1
 25.471
 0.898
 1.4
 86.0

 COPYEM
 1 Ni5
 32.736
 0.038
 2.1
 99.0
 Structure [ML4]

Other files generated: example06.pth and example06.csv (see Example 5).

Example 7: Use of the %maxgco and %mingco Keywords

Select from the coordinates file nickel.cor those structures that are in the middle of the interconversion pathway between the square and the tetrahedron.

Input file: example07.dat (only first lines shown):

```
$ Example 7- Four coordinate Ni complexes, %maxgco option
! Reads atomic coordinates from file nickel.cor
! Selects structures that are in the middle of
! the planarization pathway (40 < GenCoord < 60%).
%conquest nickel
%path
%mingco 40.
%maxgco 60.
%maxdev 10.
4 1
1 2
```

Output file: example07.tab:

```
S H A P E v2.1 Continuous Shape Measures calculation
(c) 2013 Electronic Structure Group, Universitat de Barcelona
Contact: llunell@ub.edu
```

Example 7- Four coordinate Ni complexes, %maxgco option

SP-4	1	D4h	Square
T-4	2	Тd	Tetrahedron

Minimal distorsion path analysis: from SP-4 (0%) to T-4 (100%)

Deviation threshold to calculate Generalized Coordinate: 10.000%

\$ Structure	[]	ML4		SP-4	T-4	DevPath	GenCoord
ACTPNI	1	Ni1	,	0.712,	28.619,	5.4,	13.7
ADUVOL	1	Ni1	,	0.463,	32.253,	9.2,	11.1
ASBRNI	1	Ni1	,	32.428,	0.314,	7.5,	98.4
AWELET	1	Ni3	,	0.109,	30.780,	0.9,	5.4
AWELUJ	1	Ni1	,	0.056,	33.227,	3.7,	3.8
AZERAY	1	Ni1	,	30.356,	2.583,	21.0,	-
BAJWOZ	1	Ni1	,	28.722,	2.264,	16.4,	-
BAQZEY	1	Ni1	,	0.062,	33.375,	4.1,	4.0
BAVCEH	1	Ni1	,	0.050,	33.367,	3.7,	3.6
BAZRID	1	Ni1	,	0.035,	33.357,	3.1,	3.0
BAZRID	2	Ni2	,	0.243,	28.800,	0.1,	8.0
BAZSUR	1	Ni1	,	0.944,	33.963,	16.9,	-
BEFDIZ02	1	Ni1	,	1.025,	34.017,	17.7,	-
BEGDAT	1	Ni1	,	0.002,	33.335,	0.7,	0.7
BIPKER	1	Ni1	,	30.909,	1.126,	13.1,	-
BIVFOB	1	Ni1	,	0.464,	33.467,	11.3,	-
BONHIV	1	Ni1	,	0.995,	33.997,	17.4,	-
CABQUS	1	Ni1	,	0.093,	33.395,	5.1,	5.0
CADJEW	1	Ni1	,	33.353,	0.056,	3.9,	100.0
CADJEW	2	Ni2	,	33.343,	0.059,	4.0,	100.0
CADJEW	3	Ni3	,	33.363,	0.109,	5.4,	100.1

Filtered output file: example07.flt:

```
_____
S H A P E v2.1 Continuous Shape Measures calculation
(c) 2013 Electronic Structure Group, Universitat de Barcelona
            Contact: llunell@ub.edu
 _____
Example 7- Four coordinate Ni complexes, %maxgco option
SP-4
            1 D4h Square
T-4
            2 Td
                  Tetrahedron
Minimal distorsion path analysis:
  from SP-4 (0%) to T-4 (100%)
Filtered results
 Only structures within the following boundaries are given in this file:
 Path deviation function (%): 0.000 - 10.000
Generalized coordinate (%): 40.000 - 60.000
Structure [ML4 ]
                   SP-4
                              T-4
                                     DevPath GenCoord
DUKNED 1 Ni1,
                 12.738,
                            6.199,
                                     0.2,
                                              59.3
```

Other files generated: example07.pth and example07.csv (see Example 5).

Example 8: Use of a user-defined reference polyhedron

\$ Cyclen complexes in cis conformation %path 5 6 4 0 TUKWEB 2.040913.9238910.64074-0.839884.1383110.95260 N4 N3 2.231244.9423813.372962.073512.2299713.433970.628603.5840312.61024-0.855631.9083412.62380-0.640305.0924813.74584 N1 N6 Zn1 N5 N2 NAXJIF 1.576730.927819.500332.083091.652826.595551.200343.8126410.250451.641344.563007.294410.310802.658208.13611 N2 N3 N1 N4 Ag1 8.13611 -1.91668 3.16393 9.58508 **S**1 -1.13006 1.56080 6.07099 **S**3

Ideal polyhedron file: example08.ref

```
dvCU
Divacant cube
C2v
0.000 0.000 0.000
0.000 0.000 1.000
0.000 1.000 0.000
1.000 0.000 0.000
```

Input file: example08.dat

1.000	1.000	0.000
1.000	1.000	1.000
0.500	0.500	0.500

Note that in the .ref file the coordinates of the central atom must be in the last line.

Alternatively one could use an ideal polyhedron file dvcube.ide introducing the *sideal dvcube* instruction in the input file.

Output file: example08.tab

```
S H A P E v2.1 Continuous Shape Measures calculation

(c) 2013 Electronic Structure Group, Universitat de Barcelona

Contact: llunell@ub.edu

Cyclen complexes in cis conformation

TPR-6 4 D3h Trigonal prism

dvCU 0 C2v Divacant cube

Minimal distorsion path analysis:

from TPR-6 (0%) to dvCU (100%)

Deviation threshold to calculate Generalized Coordinate: 10.000%

Structure [ML6 ] TPR-6 dvCU DevPath GenCoord

TUKWEB , 1.967, 3.699, 3.8, 43.7

NAXJIF , 6.955, 0.602, 7.0, 82.8
```

Other files generated: *example08.pth*, *example08.csv* (see Example 5).

Example 9. Large Polyhedra: Specifying a Vertex Pairing with the %fixperm Option

Dodecahedron

It is first necessary to run **SHAPE** with the %test keyword, to obtain the coordinates of the reference dodecahedron, whereupon the files **dodec.tst** and DD-20.xyz are generated.

Test file: dodec.dat

%test
 20 0
 1

Output file: dodec.tst

```
S H A P E v2.1 Continuous Shape Measures calculation
(c) 2013 Electronic Structure Group, Universitat de Barcelona
Contact: llunell@ub.edu
Ideal structures L20
DD-20 1 Ih Dodecahedron
M 0.0000 0.0000 0.0000
L 1.1135 0.8090 -0.2629
```

L	-0.4253	1.3090	-0.2629
L	-1.3764	0.0000	-0.2629
L	-0.4253	-1.3090	-0.2629
L	1.1135	-0.8090	-0.2629
L	0.4253	1.3090	0.2629
L	-1.1135	0.8090	0.2629
L	-1.1135	-0.8090	0.2629
L	0.4253	-1.3090	0.2629
L	1.3764	0.0000	0.2629
L	0.6882	0.5000	-1.1135
L	-0.2629	0.8090	-1.1135
L	-0.8507	0.0000	-1.1135
L	-0.2629	-0.8090	-1.1135
L	0.6882	-0.5000	-1.1135
L	0.2629	0.8090	1.1135
L	-0.6882	0.5000	1.1135
L	-0.6882	-0.5000	1.1135
L	0.2629	-0.8090	1.1135
L	0.8507	0.0000	1.1135

Distances

	L1	L2	L3	L4		ь5	L6	L7	L8
Х	1.4013	1.4013	3 1.401	3 1.40	13 1	.4013	1.4013	1.4013	1.4013
L1		1.6180	2.618	0 2.61	80 1	.6180	1.0000	2.2882	2.8025
L2			1.618	0 2.61	80 2	.6180	1.0000	1.0000	2.2882
г3				1.61	80 2	.6180	2.2882	1.0000	1.0000
L4					1	.6180	2.8025	2.2882	1.0000
L5							2.2882	2.8025	2.2882
L6								1.6180	2.6180
L7									1.6180
	L9	L10	L11	L1	2	L13	L14	L15	L16
Х	1.4013	1.4013	3 1.401	3 1.40	13 1	.4013	1.4013	1.4013	1.4013
L1	2.2882	1.0000	1.000	0 1.61	80 2	.2882	2.2882	1.6180	1.6180
L2	2.8025	2.2882	2 1.618	0 1.00	00 1	.6180	2.2882	2.2882	1.6180
L3	2.2882	2.8025	5 2.288	2 1.61	80 1	.0000	1.6180	2.2882	2.2882
L4	1.0000	2.2882	2.288	2 2.28	82 1	.6180	1.0000	1.6180	2.6180
L5	1.0000	1.0000	1.618	0 2.28	82 2	.2882	1.6180	1.0000	2.2882
L6	2.6180	1.6180	1.618	0 1.61	80 2	.2882	2.6180	2.2882	1.0000
L7	2.6180	2.6180	2.288	2 1.61	80 1	.6180	2.2882	2.6180	1.6180
L8	1.6180	2.6180	2.618	0 2.28	82 1	.6180	1.6180	2.2882	2.2882
L9		1.6180	2.288	2 2.61	80 2	.2882	1.6180	1.6180	2.2882
L10			1.618	0 2.28	82 2	.6180	2.2882	1.6180	1.6180
L11				1.00	00 1	.6180	1.6180	1.0000	2.2882
L12					1	.0000	1.6180	1.6180	2.2882
L13							1.0000	1.6180	2.6180
L14								1.0000	2.8025
L15									2.6180
		L17	L18	L19	L2	0			
X	1.	.4013	1.4013	1.4013	1.40	13			
L1	2.	.2882	2.6180	2.2882	1.61	.80			
L2	1.	.6180	2.2882	2.6180	2.28	82			
L3	1.	.6180	1.6180	2.2882	2.61	.80			
L4	2.	.2882	1.6180	1.6180	2.28	82			
L5	2.	.6180	2.2882	1.6180	1.61	.80			
L6	1	.6180	2.2882	2.2882	1.61	.80			
ц/ то	1.	.0000	1.0180	2.2882	2.28	82			
ЦΩ	1	.0180	1.0000	1.0100	2.28	82			
LУ T 1 0	2	.2002	1.0180	1.0000	1.01	00			
LIU	2	.2882	2.2882	1.0100	1.00				
	2	.0180	2.8025	2.0180	2.28	82			
ь12	2.	.2882	2.0180	2.8025	2.61	80			

1	L13	2.2882	2.2882	2.6180	2.8025				
]	L14	2.6180	2.2882	2.2882	2.6180				
1	L15	2.8025	2.6180	2.2882	2.2882				
1	L16	1.0000	1.6180	1.6180	1.0000				
1	L17		1.0000	1.6180	1.6180				
1	L18			1.0000	1.6180				
1	L19				1.0000				
An	glesLXL								
	L1	L2	L3	L4	L5	L6	L7	L8	
I	L1	70.5288	138.1897	138.1897	70.5288	41.8103	109.4712	180.0000	
]	L2		70.5288	138.1897	138.1897	41.8103	41.8103	109.4712	
I	L3			70.5288	138.1897	109.4712	41.8103	41.8103	
]	L4				70.5288	180.0000	109.4712	41.8103	
I	L5					109.4712	180.0000	109.4712	
I	L6						70.5288	138.1897	
I	ե7							70.5288	
	•••								
This	reference	structure	e cannot l	be used w:	ithout FIX	KPERM opt:	ion		

From the DD-20.xyz *we can generate the file containing the coordinates of the reference dodecahedron:* example09.ref

```
DD-20
Dodecahedron
Th
             0.8090 -0.2629
    1.1135
   -0.4253
            1.3090
                    -0.2629
   -1.3764
            0.0000 -0.2629
   -0.4253
           -1.3090
                    -0.2629
    1.1135
           -0.8090
                    -0.2629
    0.4253
            1.3090
                     0.2629
   -1.1135
            0.8090
                      0.2629
   -1.1135
           -0.8090
                      0.2629
    0.4253
           -1.3090
                      0.2629
    1.3764
            0.0000
                     0.2629
    0.6882
            0.5000 -1.1135
   -0.2629
            0.8090 -1.1135
   -0.8507
            0.0000
                    -1.1135
   -0.2629
           -0.8090
                    -1.1135
    0.6882
           -0.5000
                    -1.1135
    0.2629
           0.8090
                     1.1135
           0.5000
   -0.6882
                     1.1135
                      1.1135
   -0.6882
           -0.5000
    0.2629
           -0.8090
                      1.1135
             0.0000
    0.8507
                      1.1135
    0.0000
             0.0000
                      0.0000
```

Then a vertex of the ideal dodecahedron should be assigned to each vertex of the problem structure. As an example, we show here the skeleton of dodecahedrane (left) and the ideal polyhedron (right) with their atom numberings, that have been used to make the vertex assignment at the end of each coordinates line in the input file *example09.dat*.

Dodecahedrane ($C_{20}H_{20}$)

Ideal Dodecahedron

Input file: example09.dat

\$ Examp	ole 9 - Dodecahedra	with	%fixperm	option	
%fixper	·m −1				
20 0					
1					
dodecah	ledrane				
C1	28.44679	3.454	63 -33	.58569	10
C2	24.39894	3.551	18 –33.	.55192	8
C3	26.41729	2.813	375 -32	26794	19
C4	26.38756	2.031	_39 _33	59312	9
C5	28.47186	4.779	961 -34	.36851	1
C6	24.42402	4.876	516 -34	.33474	3
C7	27.16565	3.117	96 –35	70969	15
C8	25.70516	5.212	282 -32	21073	17
C9	27.24385	5.176	512 -32	22357	16
C10	25.62696	3.154	466	69686	14
C11	26.45352	5.517	/03 –35	.65248	12
C12	26.48325	6.299	939 -34	.32731	2
C13	27.68524	3.696	524 -32	26352	20
C14	25.14496	2.488	354 -34	.38902	4
C15	25.19311	3.755	568 -32	24273	18
C16	27.63709	2.429	910 -34	40981	5
C17	27.67770	4.575	510 -35	67770	11
C18	25.23372	5.901	68 –33	.51061	7
C19	25.18557	4.634	-35	65691	13
C20	27.72585	5.842	.24 -33	53140	6
Ar_hydr	ate_55707				
01	0.39296 3	2.6159	96 -6.5	56135	2
02	0.30563 2	5.3679	97 -5.1	L0327	9
03	-1.88792 3	1.9934	-5.0)4347	7
04	2.69910 3	1.9241	-5.1	L1326	6
05	0.36408 2	6.8078	-2.6	59137	19
06	2.58651 2	5.9905	50 -6.6	52116	5
07	-2.00051 2	6.0598	-6.5	55136	4
08	0.33451 3	1.1760	9 -8.9	97325	12
09	-1.90822 2	8.3332	27 -2.3	74310	18
010	-0.90229 3	0.9411	-2.7	71661	17
011	1.75336 3	0.9010)5 –2.7	75702	16
012	-1.98021 2	9.7199	95 -8.8	35174	13
013	-3.26688 3	0.1931	4 -6.5	57660	3
014	2.67880 2	8.2639	97 –2.8	31289	20
015	3.96547 2	7.7907	/8 _5.0	08803	10
016	1.60087 2	7.0427	-8.9	94802	15
017	-1.05477 2	7.0828		90761	14

018	3.97579	30.08372	-6.68680	1
019	2.60681	29.65064	-8.92153	11
020	-3.27720	27.90021	-4.97783	8

Output file: example09.tab

Example 10: Truncated Icosahedron

Input file: fullerene.dat

```
$ Truncated icosahedra: C60 in C60H60 and In48Na12 in Na172In197Ni2
%fixperm -1
60 0
1
C60
```

C1	0.005146	0.007254	0.003476	35
C2	1.458757	0.007257	0.003476	34
C3	1.907989	1.389770	0.003240	16
C4	0.731948	2.244255	0.003047	57
C5	-0.444088	1.389769	0.003238	17
C6	-1.573237	1.756575	0.737186	18
C7	-0.692556	-0.953037	0.737745	36
C8	2.156466	-0.953034	0.737747	33
C9	3.037135	1.756579	0.737190	15
C10	0.731946	3.431330	0.737225	58
C11	3.332048	-0.570871	1.502179	32
C12	3.763628	0.756279	1.501828	31
C13	3.037103	2.992887	1.501655	55
C14	1.907956	3.813075	1.501639	56
C15	-0.444061	3.813072	1.501634	60
C16	-1.573211	2.992880	1.501650	59
C17	-2.299724	0.756269	1.501826	38
C18	-1.868146	-0.570881	1.502175	37
C19	0.034164	-1.953560	1.501771	8
C20	1.429747	-1.953559	1.501772	7
C21	-0.692575	-2.189974	2.738343	49
C22	-1.868623	-1.335620	2.738313	9
C23	2.156486	-2.189970	2.738343	47
C24	3.332537	-1.335613	2.738314	6
C25	4.212753	1.374358	2.738298	30
C26	3.764379	2.757156	2.738009	14
C27	1.458799	4.431737	2.738000	54
C28	0.005090	4.431737	2.737998	52
C29	-2.300475	2.757146	2.738006	19
C30	-2.748849	1.374346	2.738296	39

C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 C56 C57	0.00 1.45 3.76 4.21 3.33 2.15 -1.86 -0.69 -2.30 -2.74 1.90 3.03 -1.57 -0.44 -2.29 -1.86 0.03 1.42 3.76 3.33 0.73 -1.57 -0.69 2.15 3.03 0.73 -1.57 -0.69 2.15 3.03 0.73 -1.57 -0.69 -0.69 -0	5106 8809 4380 2758 2525 6480 8632 2587 0472 8848 7964 7112 3201 4052 9718 8150 4157 9737 3626 2044 1958 3230 2561 6460 7140 5146 8754	-2.416864 -2.416861 -0.742262 0.640532 3.350500 4.204856 3.350493 4.204851 -0.742271 0.640522 -1.798191 -0.977998 -0.978008 -1.798196 1.258603 2.585751 3.968433 3.968437 1.258612 2.585757 -1.416450 0.258297 2.967916 2.967922 0.258303 2.007624 2.007626		3.925583 3.925581 3.925571 3.925282 3.925266 3.925264 3.925264 3.925233 3.925572 3.925280 5.161946 5.161940 5.161943 5.161750 5.161403 5.161808 5.161808 5.161810 5.161751 5.161403 5.926355 5.926392 5.925834 5.925834 5.926392 6.660108 6.660106	50 48 529 13 53 20 51 10 40 46 45 41 22 11 22 28 27 44 123 26 425
C58	1.90	7991	0.625113		6.660343	3
C59	0.73	1957	-0.229374		6.660537	43
C60	-0.44	4084	0.625111		6.660340	2
!						
In48Nal2	10 540	4 500		E /		
	19.548	4.583	50.605	52		
	20.337	2 2 2 2 7	53 161	52		
Tn3	20.476	9.033	53,131	12		
In3	21.079	2.476	49.105	56		
In3	23.039	8.122	49.075	13		
In6	27.501	1.869	62.126	10		
In6	28.500	4.744	62.110	41		
In6	32.632	0.044	54.005	7		
In6	33.630	2.920	53.989	47		
In8	22.947	-0.194	60.595	39		
In8	28.848	-2.293	51.256	34		
108	26.198	9.1/0	60.545 51.206	2		
1118 Tp10	32.099	_0 296	51.200	2 0		
	30,992	-0.290	60.543	42		
Tn10	31,518	-1.201	56.548	8		
In10	33.535	4.611	56.517	48		
In18	18.443	4.977	55.792	51		
In18	19.443	7.856	55.777	11		
In18	23.651	3.125	47.550	55		
In18	24.650	6.004	47.535	14		
In21	27.517	-2.391	59.038	37		
1n21	29.114	-2.959	56.511	36		
11121 Tn21	31.141 32 738	0.048 7 / 20	56.982 56.455	44 46		
In22	31.462	2.039	49.825	32		
In22	23.723	4.791	62.074	21		
In23	19.374	0.519	53.202	60		
In23	20.939	-0.037	50.726	58		
In23	22.927	10.753	53.148	26		
In23	24.491	10.197	50.671	27		

In28	24.534	1.899	62.164	40
In28	26.152	6.559	62.139	1
In28	31.339	-0.521	51.394	33
In28	32.957	4.140	51.369	6
In30	31.414	0.485	59.022	49
In30	32.418	3.376	59.007	50
In35	24.440	-2.337	58.971	38
In35	27.684	-3.491	53.838	35
In35	28.693	9.912	58.906	43
In35	31.936	8.758	53.772	45
In48	20.240	-0.840	55.905	59
In48	23.417	-1.970	50.876	57
In48	24.457	11.310	55.840	25
In48	27.635	10.179	50.811	28
In51	29.090	2.852	47.971	31
In51	21.201	5.658	60.458	22
Na12	24.351	-3.935	53.504	17
Na12	22.565	-3.300	56.331	18
Na12	29.594	11.168	53.423	4
Na12	27.808	11.804	56.250	3
Na48	28.040	5.954	47.142	30
Na48	26.342	1.060	47.168	15
Na48	20.614	8.595	58.896	23
Na48	18.915	3.701	58.923	20
Na48	26.276	-1.885	49.115	16
Na48	20.006	0.345	59.040	19
Na48	29.821	8.325	49.060	29
Na48	23.550	10.555	58.985	24

Output file: fullerene.tab

```
S H A P E v2.1 Continuous Shape Measures calculation
(c) 2013 Electronic Structure Group, Universitat de Barcelona
            Contact: llunell@ub.edu
  _____
                                   _____
Truncated icosahedra: C60 in C60H60 and In48Na12 in Na172In197Ni2
TIC-60
            1 Ih
                   Truncated Icosahedron
Fixed vertices permutation used for CShM
(specific permutation for each fragment)
Structure [L60 ] TIC-60
C60
                  0.003
            .
In48Na12
                   0.150
             ,
```

Example 11: Use of the %fixperm 1 Option

Compare the skeletons of phenylacetylenes and of disilyne with that of acetylene using the same permutation for all structures in a file.

Input file: example11.dat

Ideal shape file: example11.ref

ACET Linear acetylene Dinfh 0.558100 0.4 0.441900 0.5

0,558100	0,424900	0.00000
0.441900	0.575100	0.00000
0.668900	0.293500	0.000000
0.331100	0.706500	0.000000

ConQuest coordinates file (only first few lines shown): example11.cor

XONNOE	**FRAG**	1		
Si1	12.73812	12.02248	32.82539	1555001
Si1E	12.02248	12.73812	34.67421	6557001
C1	12.46423	12.56259	31.05319	1555002
C1E	12.56259	12.46423	36.44641	6557002
ASIJER	**FRAG**	1		
C7A	4.39115	8.06144	6.76854	2676012
C7	4.01895	7.80998	5.66677	1555012
C4A	4.81373	8.33510	8.11653	2676007
C4	3.59637	7.53633	4.31879	1555007
ASIJER	**FRAG**	2		
C14A	3.63340	4.06486	5.66615	2666024
C14	4.00217	4.31791	6.76917	1555024
C11A	3.21994	3.77463	4.32712	2666019
C11	4.41562	4.60814	8.10820	1555019
CIFWUJ	**FRAG**	1		
C1D	-1.38304	0.00000	4.17935	5556001
C1	-0.25053	0.00000	3.78587	1555001
C2D	-2.73089	0.00000	4.67877	5556002
C2	1.09731	0.00000	3.28645	1555002
COBSUI	**FRAG**	1		
C44A	4.72609	10.27316	6.83506	2676097
C44	3.61994	10.30689	6.38301	1555097
C45A	6.06242	10.24539	7.37753	2676098
C45	2.28361	10.33465	5.84054	1555098

Output file: example11.tab

S H A P E v2.1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu ACET 0 Dinfh Linear acetylene Fixed vertices permutation used for CShM 2 1 4 3 Structure [L4] ACET XONNOE 1 , 2.915 ASIJER 1 , 0.329 ASIJER 2 , 0.317 CIFWUJ 1 , 0.311 COBSUI 1 , 0.328 DPHACT01 1 , 0.241 DPHACT01 2 , 0.217 DPHACT02 1 , 0.305 DPHACT02 2 , 0.310 DPHACT03 1 , 0.323

2		0.321
7	'	0.070
T	1	0.270
2	,	0.272
1	,	0.277
2	,	0.294
1	,	0.316
2	,	0.308
1	,	0.300
2	,	0.296
1	,	0.308
1	,	0.308
1	,	0.310
1	,	0.317
1	,	0.330
1	,	0.305
1	,	0.310
	2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1	2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

Example 12: Use of the %fixperm 0 Option

To be used with the example12.cor and example12.ide files. Compares the skeletons of phenylacetylenes and of disilyne with that of acetylene by comparing the *i*-th atom of each structure with the corresponding atom of the reference structure (%fixperm 0).

Input file: example12.dat

```
%conquest example12
%fixperm 0
    4 0
    0
```

This input file is equivalent to:

```
%conquest example12
%fixperm 1
    4    0
    0
1 2 3 4
```

Ideal shape file: example12.ref is identical to example11.ref.

```
Output file: example12.tab
```

```
S H A P E v2.1 Continuous Shape Measures calculation

(c) 2013 Electronic Structure Group, Universitat de Barcelona

Contact: llunell@ub.edu

ACET 0 Dinfh Linear acetylene

Fixed vertices permutation used for CShM

1 2 3 4

Structure [L4 ] ACET

XONNOE 1 , 2.915

ASIJER 1 , 0.329

ASIJER 2 , 0.317

CIFWUJ 1 , 0.311
```

Example 13: Getting coordinates of Internally Defined Reference Shapes

Input file: example13.dat

```
$ Generate 9-vertices reference shapes
$ test
9 1
1 8
```

Output files: example13.tst, EP-9.xyz and CSAPR-9.xyz.

EP-9.xyz: 10 Ν 0.00000000 0.00000000 0.0000000 1.00000000 0.0000000 0.0000000 Η 0.76604444 0.64278761 0.0000000 Η Н 0.17364818 0.98480775 0.0000000 -0.50000000 Н 0.86602540 0.0000000 Н -0.93969262 0.34202014 0.0000000 Н -0.93969262 -0.34202014 0.0000000 -0.5000000 -0.86602540 н 0.0000000 0.17364818 -0.98480775 0.0000000 н 0.76604444 -0.64278761 0.0000000 Н CSAPR-9.xyz: 10 Ν 0.0000000 0.0000000 0.0000000 Н 0.00000000 0.0000000 1.0000000 Н 0.93222657 0.00000000 0.36187516 Н 0.0000000 0.93222657 0.36187516 Н -0.93222657 0.00000000 0.36187516 Η 0.0000000 -0.93222657 0.36187516

Example 14: Generating Coordinates of Structures Along a Minimal Distortion Path

-0.60947986

-0.60947986

-0.60947986

-0.60947986

Input file: movie.dat

Η

Н

Н

Η

```
$ Generation of xyz files for a minimal distortion pathway
%test
%path
    6 1
    3 4
```

0.56059535

0.56059535

-0.56059535

-0.56059535

Output file: movie.tst (see Example 9)

0.56059535

-0.56059535

-0.56059535

0.56059535

Coordinates files: TPR-6.xyz and OC-6.xyz (coordinates of the two ideal shapes), and movie.xyz (structures along the path, only the first four structures shown):

```
7
N 0.0000000 0.0000000 0.0000000
H 0.81649658 0.0000000 -0.70710678
H -0.40824829 0.70710678 -0.70710678
H -0.40824829 -0.70710678 -0.70710678
```

SHAPE 2.1 – User's Manu	al

-0.40824829	0.70710678	0.70710678
-0.40824829	-0.70710678	0.70710678
0.0000000	0.0000000	0.0000000
0.81051792	0.02011845	
_0 /2268205	0 60186080	
-0.38783588	-0.71198833	
0 81051792	-0.02011845	0 70020322
_0 38783588	0 71108833	0 70020322
0 12268205	0 60186080	0.70020322
-0.42200205	-0.09100909	0.70020322
0.0000000	0.00000000	0.0000000
0.80453927	0.04023689	-0.69329966
-0.43711580	0.67663300	-0.69329966
-0.36742346	-0.71686989	-0.69329966
0.80453927	-0.04023689	0.69329966
-0.36742346	0.71686989	0.69329966
-0.43711580	-0.67663300	0.69329966
0.00000000	0.00000000	0.0000000
0.79856061	0.06035534	-0.68639610
-0.45154956	0.66139610	-0.68639610
-0.34701105	-0.72175144	-0.68639610
0.79856061	-0.06035534	0.68639610
-0.34701105	0.72175144	0.68639610
-0.45154956	-0.66139610	0.68639610

0.0000000

0.70710678

View

Н

Н

Н 7

Ν Н Н Н Н н Н 7

Ν Н Н н Н Н н 7

Ν Н н Н Н Н Н 0.81649658

1. Load the multiple structure file generated by **SHAPE 2.1** (*File > Import > XYZ >* movie.xyz)

- 2. All the snapshots appear in the *Views* panel.
- 3. In the Window menu, select *Play Views*. Suggested settings:

0.1 sec per frame Loop – back and forth Full screen

Generating a QuickTime movie:

Click on the Overview window's **Actions** button

corner in the bottom Views palette) and choose Save as Movie.

Movies are saved in QuickTime format (extension .mov). You can customize your movie settings, including the type and quality of compression, frame rate, and so on, using the Movie Options command.

