
cosymlib Documentation

E. Bernuz, A. Carreras, M. Llunell
P. Alemany

Jun 05, 2023

cosymlib

1 Introduction 3

2 Installation 7

3 How to use cosymlib 11

4 Tutorials 25

5 Useful links 27

6 API Reference 29

Bibliography 39

Python Module Index 41

Index 43

i

ii

cosymlib Documentation

Cosymlib is a python library for computing continuous symmetry & shape measures (CSMs & CShMs). Although its
main aim is to provide simple and ready-to-use tools for the analysis of the symmetry & shape of molecules, many of
the procedures contained in cosymlib can be easily applied to any finite geometrical object defined by a set of vertices
or a by mass distribution function.

The basic tasks included in the current version of cosymlib are:

1. Molecular structure analysis

• Calculation of Continuous Shape Measures (CShMs)

• Calculation of Continuous Symmetry Measures (CSMs)

• Calculation of Continuous Chirality Measures (CCMs)

2. Electronic structure analysis

• Pseudosymmetry analysis of molecular orbitals & wavefunctions

• Continuous Symmetry & Chirality Measures for the molecular electron density

cosymlib 1

cosymlib Documentation

2 cosymlib

CHAPTER 1

Introduction

Cosymlib is a a python library for computing continuous symmetry & shape measures (CSMs & CShMs). Although
most of the tools included in cosymlib have been devised especially with the purpose of analyzing the symmetry &
shape of molecules as proposed initially by D. Avnir and coworkers [AVN], many of the procedures contained in
cosymlib can be easily applied to any finite geometrical object defined by a set of vertices or a by mass distribution
function.

1.1 Continuous Shape Measures (CShMs)

In a nutshell, the continuous shape measure SP(Q) of object Q with refespect to the reference shape P is an indicator
of how much Q resembles another object P0 with a given ideal shape, for instance a square as in the figure below.

Given that the shape is invariant upon translations, rotations, and scaling, the most evident way to compare the two
objects is to translate, rotate and scale one of them, for instance P0, until we maximize the overlap <Q|P> between Q
and P, where P is the image of P0 after these transformations.

If both the problem and the reference structures Q and P are defined as a set of vertices, we can define the shape
measure simply as:

3

cosymlib Documentation

where N is the number of vertices in the structures we are comparing, qi and pi are the position vectors of the vertices
of Q and P, respectively, and q0 the geometric center of the problem structure Q. The minimization in this equation
refers to the relative position, orientation, and scaling that must be applied to P0 to minimize the sum of squares of
distances between their respective vertices, which is equivalent to maximizing the overlap <Q|P>. If the mismatch of
the two shapes is described, as in the equation above by the distance between vertices of the two objects, a further
minimization with respect to all possible ways to label the N vertices in the reference structure P0 is also needed.

From the definition of SP(Q) it follows that if Q and P have exactly the same shape, then SP(Q) = 0. Since SP(Q) is
always positive, the larger its value, the less similar is Q to the ideal shape P. It can be shown that the maximum value
for SP(Q) is 100, corresponding to the unphysical situation for which all vertices of Q collapse into a single point. A
more detailed description of continuous shape measures and some of their applications in chemistry may be found in
the following references [CShM]:

1.2 Continuous Symmetry Measures (CSMs)

To define a continuous measure for the degree of symmetry of an object one may proceed in the same way as for the
definition of CShMs. The final result for the symmetry measure with respect to a given point symmetry group G,
denoted as SG(Q), yields an expression totally analogous to the equation above, in which Q refers again to the problem
structure, but where P is now the G-symmetric structure closest to Q:

The minimization process in this case refers to the relative position of the two structures (translation), the orientation
of the symmetry elements for the reference G-symmetric structure P, the scale factor, and again, the labeling of vertices
of the symmetric structure. Note that although the same equation may be used both to define shape and symmetry
measures, there is a fundamental difference between the two procedures: while in computing a shape measure we
know in advance the reference object P0 , in the case of symmetry measures the shape of the closest G-symmetric
structure is, in principle, previously unknown and must be found in the procedure of computing SG(Q).

Consider, for instance that we would like to measure the rectangular symmetry for a given general quadrangle. Besides
optimizing to seek for the translation, rotation, and scaling that leads to the optimal overlap of our quadrangle Q with
a particular rectangle P as in a shape measure, we will need to consider also which is the ratio between the side lengths
of the best matching rectangle and optimize also with respect to this parameter.

4 Chapter 1. Introduction

cosymlib Documentation

Although this additional optimization process may seem difficult to generalize for any given symmetry group, it has
been shown that it is possible to do it efficiently using either the folding–unfolding algorithm or via the calculation of
intermediate symmetry operation measures.

As in the case of shape measures, the values of CSMs are also limited between 0 and 100, with SG(Q) = 0, meaning that
Q is a G-symmetric shape. A more detailed description of continuous shape measures and some of their applications
in chemistry may be found in the following references [CSM]:

1.3 Continuous Chirality Measures (CCMs)

A special mention should be made to chirality, a specific type of symmetry that has a prominent role in chemistry. A
chiral object is usually described as an object that cannot be superposed with its mirror image. In this sense, we could
obtain a continuous chirality measure by using the same equation as for shape measures just by replacing P by the
mirror image of Q.

Technically speaking chirality is somewhat more complex since it implies the lack of any improper rotation symmetry
and its CCM can be based on estimating how close a given object is from having this symmetry. Using the CSMs
defined above, the continuous chirality measure can be defined as the minimal of all SG(Q) values for Sn(Q) with
n=1,2,4, In most cases it will be either for G = S1 = Cs or G = S2 = Ci, whereas in a few cases we will have
to look for G = S4 or higher-order even improper rotation axes. Since in most cases visual inspection of the studied
structure is enough in order to guess which one could be the nearest Sn group, a practical solution is just to calculate
this particular SG(Q) value, or in case of doubt, a few SG(Q) values for different Sn and pick the smallest one. A more
detailed description of continuous shape measures and some of their applications in chemistry may be found in the
following references [CCM]:

1.3. Continuous Chirality Measures (CCMs) 5

cosymlib Documentation

1.4 CSMs for quantum chemical objects

The use of the overlap <Q|P> between two general objects Q and P allows the generalization of continuous symmetry
and shape measures to more complex objects that cannot be simply described by a set of vertices, such as matrices or
functions. In this case the definition of the continuous symmetry measure is:

where Q is the given object and gi the h symmetry operations comprised in the finite point symmetry group G. The
minimization in this case just refers to the orientation of the symmetry elements that define the symmetry operations in
G. The key elements in this definition are the overlap terms <Q|giQ> between the original object Q and its image under
all the h symmetry operations gi that form group G. The precise definition on how to obtain these overlaps depends, of
course, on the nature of the object Q. For molecular orbitals as obtained in a quantum chemical calculation we have:

which is known as a SOEV (symmetry operation expectation value). For the electron density one can use an analogous
expression for the corresponding SOEV by replacing the orbital (one electron wavefunction) by the whole electron
density. Using this type of symmetry measures one is then able to compare the symmetry contents of the electronic
structure of molecules, for instance by comparing the inversion symmetry measure for different diatomic molecules
as in the example below:

The generalitzation of CSMs for functions, is of course, not limited to chemical applications and it permits extending
the notion of continuous symmetry measures to geometrical objects beyond those defined by a set of vertices. A
solid object of arbitrary shape, not restricted to a polyhedron, can be described by a function corresponding to a
constant mass distribution, and its corresponding shape and symmetry measures can be easily computed by numerical
integration to determine the SOEVs, avoiding the cumbersome minimization over vertex pairings that appear for
objects that are defined by a set of vertices.

An interesting extension for functions which are not restricted to positive values, for instance, molecular orbitals, is
the possibility of calculating continuous symmetry measures for each individual irreducible representation of a given
point group. A more detailed description of the development and some applications of CSMs in quantum chemistry
may be found in the following references [QCSMs]:

6 Chapter 1. Introduction

CHAPTER 2

Installation

cosymlib is available in both the GitHub and PyPI repositories (https://pypi.org/project/cosymlib/). Installation via
PyPI is simpler and it is recommended for most users. Follow the instructions below to install cosymlib in your
computer.

2.1 Installing cosymlib from PyPI (recommended)

This installation requires pip (https://pip.pypa.io/en/stable/installing/) to be installed in your system. We strongly
recommend the use of python environments, for more details on this, refer to https://docs.python.org/3/library/venv.
html. For most users the basic installation should proceed as follows:

1. Create a virtual environment at path <venv>

$ python3 -m venv <venv>

2. Activate this virtual environment

on MAC / Linux
$ source <venv>/bin/activate

on windows (powershell) [see note below]
C:\> <venv>\Scripts\Activate.ps1

3. Install cosymlib

$ pip install numpy
$ pip install cosymlib

4. Deactivate the virtual environment

$ deactivate

To use cosymlib you will need to activate the virtual environment every time that you open a new shell. On
Linux/MAC all the scripts contained in cosymlib will be accessible in this environment:

7

https://pypi.org/project/cosymlib/
https://pip.pypa.io/en/stable/installing/
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

cosymlib Documentation

$ source <venv>/bin/activate
$ <script_name> <script_options>
$ deactivate

On Windows, to execute the scripts you should type python followed by the full path of the script name:

C:\> python <venv>\Scripts\<script_name> <script_options>

Note: On Windows it may be necessary to add user execution permissions to activate the environment. To do this,
open a poweshell as administrator and type:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

You should do this only once in order to gain execution permissions.

2.2 Installing cosymlib’s source code

Alternatively, you can download the latest version of cosymlib from github using git (https://git-scm.com) and
install it manually through the setup.py file using setuptools (https://setuptools.readthedocs.io/).

cosymlib contains libraries written in Fortran that require a compiler to build them. Before installing cosymlib
make sure you have a working Fortran compiler installed in your system. For UNIX based systems you can install the
GNU Fortran Compiler from package repositories by opening a terminal and typing the following commands:

• Linux

On YUM-based systems (Fedora/RedHat/CentOS)

sudo yum install yum-utils

On APT-based systems (Debian/Ubuntu)

sudo apt-get build-dep

• Mac

1. Install command-line tools:

xcode-select --install

2. Get Homebrew following the instructions at https://brew.sh, and install GCC formula by:

brew install gcc

• Windows

1. Install the Windows development environment Visual Studio (https://developer.microsoft.com/en-us/
windows/downloads/)

2. Install C/Fortran compiler for Windows. We have tested and recommend mingw (https://www.mingw-w64.org)

To install cosymlib, download the source code using git in your computer by typing:

git clone https://github.com/GrupEstructuraElectronicaSimetria/cosymlib.git

8 Chapter 2. Installation

https://git-scm.com
https://setuptools.readthedocs.io/
https://brew.sh
https://developer.microsoft.com/en-us/windows/downloads/
https://developer.microsoft.com/en-us/windows/downloads/
https://www.mingw-w64.org

cosymlib Documentation

This creates a copy of the repository in your computer. You can keep it updated by synchronizing it with the GitHub
repository by using the command:

git pull

Once this is done, move to the repository root directory (where setup.py is found) and type the following command
to install cosymlib :

python setup.py install --user

Note: The requirements.txt file located at the repository root directory contains a list of all dependency python
modules needed for cosymlib to run. If any of them are missing in your system you will need to install them before
running cosymlib.

In both cases (PyPI & Github installations) the code will be installed as a python module. To check that it is properly
installed you can run the python interpreter and execute:

import cosymlib

If the execution does not show any errors, then cosymlib has been installed successfully.

Note: For users with Apple M1, the scipy library might not properly install when following the instructions above.
To solve this, install it manually:

brew install openblas
brew install lapack
brew install python
pip install cython pybind11 pythran numpy
OPENBLAS=$(brew --prefix openblas) CFLAGS="-falign-functions=8 ${CFLAGS}" pip install
→˓--no-use-pep517 scipy==1.7.0

Note: When using an IDE, remember to select the python interpreter in the hombrew path. To find it:

which python3
>> /opt/homebrew/bin/python3

2.2. Installing cosymlib’s source code 9

cosymlib Documentation

10 Chapter 2. Installation

CHAPTER 3

How to use cosymlib

Cosymlib is a a python library for computing continuous symmetry & shape measures (CSMs & CShMs). Besides
using the APIs contained in cosymlib to build your own custom-made python programs we have also written some
general scripts to perform standard tasks such as calculating a continuous shape measure for a given structure without
the need of writing a python script. All this general task scripts are called using a similar syntax which includes the
name of the script, the name of the file containing the structural data, and optional arguments specifying the tasks we
want to perform:

$ script filename -task1 -task2 ... -taskn

For instance, consider a struct.xyz file containing the following structural information for a H4 molecule in an
approximately square geometry:

4
H4 Quadrangle
H 1.1 0.9 0.0
H -1.0 1.1 0.0
H -0.9 -1.2 0.0
H 1.1 -1.0 0.0

If we would like to compute the square shape measure S(SP-4) for this 4-vertex polygon we simply can call the shape
script indicating the name of our .xyz file containing the coordinates and use the -m flag (m stands for measure) with
the SP-4 label to indicate that we want to compute a shape measure using a perfect square (SP-4 stands for square
planar structure with 4 vertices) as the reference shape:

$ shape struct.xyz -m SP-4

and the shape script wil call the APIs in cosymlib to read first our input file, generate a molecule object, calculate the
S(SP-4) continuous shape measure for it, and print the result of the calculation on the screen:

--
COSYMLIB v0.10.5
Electronic Structure & Symmetry Group
Institut de Quimica Teorica i Computacional (IQTC)

(continues on next page)

11

cosymlib Documentation

(continued from previous page)

Universitat de Barcelona
--
Structure SP-4
H4, 0.520,

--
End of calculation

--

If, for instance, we also want the coordinates for the square with the optimal overlap with our problem structure, we
just need to include the -s flag (where s stands for structure) in our call:

$ shape struct.xyz -m SP-4 -s

A longer, explicit version for some flags is also available using a double - sign. With these explicit flags the previous
command becomes:

$ shape struct.xyz --measure SP-4 --structure

The general task scripts include also gsym and cchir for calculating continuous symmetry and chirality measures for
polyhedral structures, shape_map for plotting shape maps, as well as the esym and mosym scripts for the continuous
symmetry analysis of electron densities and the pseudosymmetry analysis of molecular orbitals, respectively.

Besides these six basic scripts, we have also developed cosym, a general script that allows to perform any of the basic
calculations above. We could, for instance, use directly cosym to calculate the previous shape measure using the
following command:

$ cosym struct.xyz -shp_m SP-4 -s

Note that when using cosym some of the optional flags in shape change to indicate which type of calculation we
would like to perform. For instance, -m becomes -shp_m to distinguish it from a symmetry measure (-m flag in
sym) that becomes -sym_mwhen called from cosym. On the other hand, other arguments such as -s, which have the
same meaning when calculating shape, symmetry or chirality measures, remain unchanged when used in combination
with the general cosym script.

Taking into account the users of our previous programs, we have also written a stand-alone script shape_classic
which is able to read an old_shape.dat input file containing both the structural information and the necessary
keywords to run a full CShM calculation as it was done in our previous SHAPE program.

In the sections below you can find a detailed description of all stand-alone scripts as well as all APIs included in the
present distribution of cosymlib.

3.1 General task scripts

The cosymlib library includes several scripts to perform basic tasks that can be run in a terminal as command line
instructions, without the need of writing a full python script. The following subsections describe the general usage of
all of them.

12 Chapter 3. How to use cosymlib

cosymlib Documentation

3.1.1 shape

shape can be used for computing continuous shape measures (CShMs) for geometrical structures defined by the
cartesian coordinates for a set of vertices, for instance, a molecular structure defined by the positions of the atomic
nuclei.

The minimal information needed to run shape is an input file containing the coordinates of a set of vertices. Since
shape is mainly intended to be used in the context of structural chemistry, the main source of structural information
will be a fname.xyz file containing a molecular geometry in xyz format (http://en.wikipedia.org/wiki/XYZ_file_
format).

An example of a cocl6.xyz file with the structure for a perfect octahedral CoCl6 fragment with 2.4Å Co-Cl inter-
atomic distances is:

7
CoCl6
Co 0.0 0.0 0.0
Cl -2.4 0.0 0.0
Cl 2.4 0.0 0.0
Cl 0.0 2.4 0.0
Cl 0.0 -2.4 0.0
Cl 0.0 0.0 2.4
Cl 0.0 0.0 -2.4

The first line in the file indicates the number of atoms (vertices in the geometric structure), the second line contains a
free-format descriptive title, and the following lines (as many as indicated in the first line) contain a label (usually the
atomic symbol) and the cartesian coordinates x, y, z for each atom (vertex) in the structure.

fname.xyz files read by shape may contain a single structure as in the previous example or multiple structures (all
with the same number N of atoms). In this case you must append a

N
Structure_name
label_1 x1 y1 z1
...

label_N xN yN zN

block for each structure, without leaving any blank lines between them. Note that even if the number of vertices N
must be the same for all structures, it is mandatory to include it explicitly for each block.

Shape is also able to read input structures from files in other formats used in structural chemistry. A detailed description
of the structural files read by shape can be found in the information on input formats section.

The basic call to the shape script must provide the the file containing the input structure and the reference shape with
respect to which the shape measure is calculated.

$ shape input_file -m SH

where input_file is a file containing the structural information in a valid format, for instance a .xyz file, -m
requests a shape measure calculation, and is SH a label indicating a given reference structure, for instance SP-4 for a
square or OC-6 for an octahedron. Note that the reference shape must be compatible with the problem structure, i. e.,
they must both contain the same number of atoms (vertices). To obtain a list of the labels for the reference structures
compatible with a given input structure you may use:

$ shape input_file -l

If input_file contains, for instance, a structure with 6 atoms (vertices) your will get the following output on
screen:

3.1. General task scripts 13

http://en.wikipedia.org/wiki/XYZ_file_format
http://en.wikipedia.org/wiki/XYZ_file_format

cosymlib Documentation

Available reference structures with 6 Vertices:

Label Sym Info

HP-6 D6h Hexagon
PPY-6 C5v Pentagonal pyramid
OC-6 Oh Octahedron
TPR-6 D3h Trigonal prism
JPPY-6 C5v Johnson pentagonal pyramid J2

We can then use this information to compute the desired continuous shape measure

$ shape input_file -m OC-6

if we want to compute the octahedral shape measure. For a file containing a perfect octahedron of carbon atoms:

6
C6_octa

C -1.0 0.0 0.0
C 1.0 0.0 0.0
C 0.0 1.0 0.0
C 0.0 -1.0 0.0
C 0.0 0.0 1.0
C 0.0 0.0 -1.0

the program will return:

Starting...
--
COSYM v0.7.4
Electronic Structure Group, Universitat de Barcelona
--

Structure OC-6

C6_octa, 0.000

End of cosym calculation

Indicating that it is indeed a perfect octahedron, S(OC-6) = 0.000. If we want to know how far this octahedron is from
the reference triangular prism we may use:

$ shape input_file -m TPR-6

which returns a value of S(TPR-6) = 16.737. Note that since shape measures are independent from size, posi-
tion, or orientation of the problem structure, we would obtain exactly the same values for any perfect octahedron
in input_file.

When studing the shape of the coordination sphere around a given atom, let us say a transition metal atom M sur-
rounded by n atoms L coming from the surrounding ligands, it is possible to consider just the Ln polyhedron or a
centered MLn “polyhedron”. We will obtain different information from each calculation. While considering the Ln
polyhedron, we will know how different it is from the ideal references, but if we are interested in distortions due to
displacements of the central atom from the geometric center we will need to compare the centered MLn “polyhedron”
with the ideal references where the central atom is located at the geometric center of the object. Since the central M
atom and the n surrounding ligands are not equivalent (no M <-> L permutations are allowed when computing the
shape measure) it is necessary to indicate that the structure in input_file corresponds to a centered MLn poly-
hedron and not to a simple Ln+1 polyhedron. This is achieved by including the -c N flag in the shape command,

14 Chapter 3. How to use cosymlib

cosymlib Documentation

where N is an integer number indicating the position of the central atom in input_file (for a file with multiple
structures the central atom should be in the same position for all of them). If one uses the cocl6.xyz file above as
input_file indicating that the first atom in the structure (the Co atom) is in the center (-c 1)

$ shape cocl6.xyz -l -c 1

we get the following valid labels:

Available reference structures with 6 Vertices:

Label Sym Info

HP-6 D6h Hexagon
PPY-6 C5v Pentagonal pyramid
OC-6 Oh Octahedron
TPR-6 D3h Trigonal prism
JPPY-6 C5v Johnson pentagonal pyramid J2

note that, although these labels the same as those for a structure with 6 atoms where we do not include a central atom,
a calculation including the -c N flag is not equivalent to a calculation where the central atom is ignored, that is just
for the Ln polyhedron. If one wants to calculate the shape measure just for the “empty” Ln shell one needs to prepare
a different input file deleting the line corresponding to the central atom and reducing the number of atoms by 1.

If we try omitting the -c N flag for the cocl6.xyz file we get a different result. Using

$ shape cocl6.xyz -l

we find:

Available reference structures with 7 Vertices:

Label Sym Info

HP-7 D7h Heptagon
HPY-7 C6v Hexagonal pyramid
PBPY-7 D5h Pentagonal bipyramid
COC-7 C3v Capped octahedron
CTPR-7 C2v Capped trigonal prism
JPBPY-7 D5h Johnson pentagonal bipyramid J13
JETPY-7 C3v Johnson elongated triangular pyramid J7

which are the possible reference structures for empty L7 polyhedra, since now the Co atom is being considered on
equal foot to all other six Cl atoms, even if this might make no sense from a chemical point of view. The list of
currently available reference structures in the cosymlib program is at the page end.

To calculate the octahedral shape measure for the CoCl6 structure contained in the cocl6.xyz file we will use:

$ shape cocl6.xyz -c 1 -m OC-6

which will return a S(OC-6)= 0.000 value since the six Cl atoms in the structure form a perfect octahedron with the
Co atom sitting exactly in its geometric center. Note also that, as shown in this example, the position of the -c N and
-m OC-6 flags, or the input_file in the call to the shape script is totally irrelevant and any combination such as:

$ shape cocl6.xyz -c 1 -m OC-6

$ shape -c 1 -m OC-6 cocl6.xyz

$ shape -m OC-6 cocl6.xyz -c 1

3.1. General task scripts 15

cosymlib Documentation

will result in exactly the same CShM calculation.

Somtimes we are not just interested in the shape measure, that is, how far our problem shape is from the ideal reference,
but also we would like to have the coordinates of the ideal reference shape with the size, position, and orientation that
is closest to our problem shape. To achieve this we just need to include the -s flag in our call.

Let us consider a struct.xyz file containing the geometry for an approximately square H4 molecule.

4
H4 Quadrangle
H 1.1 0.9 0.0
H -1.0 1.1 0.0
H -0.9 -1.2 0.0
H 1.1 -1.0 0.0

If we want to know how far it is from having a perfectly square geometry and which is the closest square to its actual
distorted structure we may use:

$ shape struct.xyz -m SP-4 -s

which will yield:

Starting...
--
COSYM v0.7.4
Electronic Structure Group, Universitat de Barcelona

--

Structure SP-4

H4, 0.520

4
H4
H 1.100000 0.900000 0.000000
H -1.000000 1.100000 0.000000
H -0.900000 -1.200000 0.000000
H 1.100000 -1.000000 0.000000
4
H4_SP-4
H 1.100000 1.000000 0.000000
H -0.975000 0.975000 0.000000
H -0.950000 -1.100000 0.000000
H 1.125000 -1.075000 0.000000

from which we find that the problem structure has an approximate square planar geometry with a small departure from
the ideal shape, S(SP-4) = 0.520, together with the coordinates of the problem structure and its closest ideal (square)
structure, which we can use to plot the superposition of problem structure (in red) and the ideal reference (in blue):

16 Chapter 3. How to use cosymlib

cosymlib Documentation

Other optional flags to control the execution of shape are:

shape -h (no input file needed) returns a list of all available flags and their use

Running shape with the -o file_name flag prints all output into the file_name file

Running shape with the -r flag prints the coordinates of the reference shape in a file named Ln.xyz or MLn.xyz
where n is the number of vertices of the polyhedron.

The - info flag may be used to print the coordinates of the input structure

You may use -fixp to disable the minimization over the permutation of vertices while searching for the shape
measure. If you include the -fixp in your call, the minimization will be carried out considering only the distance
between the i-th vertex in the problem structure with the i-th vertex in the reference shape. Although this option allows
a drastic reduction of the computational cost, it should be used with care since the actual shape measure is defined
for the permutation thats gives the lowest value of S. For large structures the -fixp option will probably be the only
way of obtaining a shape measure, but this procedure is only justified for structures with small distortions from the
reference structure. Before doing the actual calculation it will be necessary to run shape with the -r flag to print the
coordinates of the reference shape and order the vertices in the problem structure accordingly.

A quite useful flag is -cref filename that allows the user to specify a custom reference structure in the filename
file. Use this option if you want to use a reference structure different from any of those provided by shape. To use this
feature you will need to include the -m custom flag in your call:

$ shape input_file -m custom -cref filename

Besides the shorthand version of the flags described above, it is also possible to use an explicit version by writing them
preceded by a double -- sign. The explicit versions of the flags are:

Short Flag Explicit flag
-h --help
-m --measure
-l --labels
-s --structure
-o --output_name
-c --central_atom
-r --references
-cref --custom_ref
-fixp --fix_permutation

Sometimes, to avoid a cumbersome repetition of several flags in the call of the shape module we may write all flags
in an input file and just call shape indicating the file with the structural input and the file with the options of the

3.1. General task scripts 17

cosymlib Documentation

calculation. For example, if the original call is:

$ shape struct.xyz -c 1 -m OC-6 -s -o struct.out

You can create a new file called struct.yml (the name for the file can be freely chosen and does not need to be the
same as for the structure) containing the options in YAML format (http://en.wikipedia.org/wiki/YAML):

central_atom : 1
measure : OC-6
structure : True
output : struct.out

and then call shape just using:

$ shape struct.xyz struct.yml

Note that you must use the explicit version of the flags in the .yml file. If a flag such as -s does not need any
additional argument, you must include True in the .yml file.

3.1.2 shape_classic

To run shape_classic you only need an old_shape.dat input file containing both the structural information
and the necessary keywords to run a full CShM calculation as in the old SHAPE program:

$ shape_classic old_shape.dat

The script will perform all tasks indicated in the input file, creating the necessary output files, normally old_shape.
out and old_shape.tab with the same information as when using our previous SHAPE program. Follow the
link below for a pdf version of the user guide for SHAPE ver. 2.1 where you will find all information to perform a
continuous shape analysis using this option.

SHAPE ver. 2.1 User's guide

3.1.3 gsym

In the case of running a continuous symmetry measure (CSM), the gsym script is required plus an input file containing
a geometric structure as the one used in the shape script. Since the main difference with the continuous shape measures
is that the reference structure now must contain one or more symmetry elements, the user will need to specify which
symmetry operation wants to analyse for the input geometry. The Th8molecule can be a good example to show the
S4symmetry that the molecule contains. The Th8.xyz file is shown below:

8
Th8
Th -16.80062 -0.55052 -13.74098
Th -12.80008 -0.09601 -14.54017
Th -15.57778 1.38797 -17.17300
Th -20.18823 -1.83274 -15.67222
Th -16.79762 -4.14442 -15.76983
Th -12.79709 -3.68990 -16.56902
Th -18.96539 0.10576 -19.10423
Th -15.57478 -2.20592 -19.20184

18 Chapter 3. How to use cosymlib

http://en.wikipedia.org/wiki/YAML

cosymlib Documentation

The simplest way to compute the S4CSM measure for Th8is to run the following command:

$ gsym Th8.xyz -m S4

which is equivalent to:

$ gsym -m S4 Th8.xyz

and will return the CSM result in the cosymlib format:

--
COSYMLIB v0.9.5
Electronic Structure & Symmetry Group
Institut de Quimica Teorica i Computacional (IQTC)
Universitat de Barcelona

--

Evaluating symmetry operation : S4

th8 0.000

--
End of calculation

--

If the user wants to save this information in a file, the -o (or --output) flag should be added as well as the output
file name. For example, the following call will execute the previous CSM calculation and will store the information in
the Th8.txt file:

$ gsym Th8.xyz -m S4 -o Th8.txt

Additional commands (or flags) can be added to the command line to control the type of calculation that will be run.
For example, the -c N command, where N is the position of an atom of the input file, explicitly tells the program
which atom acts as a central atom of the molecule and that only could permut by himself. Alternatively, the --center
x y z, where x, y and z are the 3D coordinates of a point in space, will set the origin of a structure. Similarly, the
-s and -l commands work as in the shape case. The first returns the coordinates of the ideal reference geometry with
the size, position, and orientation that is closest to our problem shape and belongs to a symmetry group. The second
gives information of the available symmetry groups in cosymlib

Available symmetry groups

E Identity Symmetry
Ci Inversion Symmetry Group
Cs Reflection Symmetry Group
Cn Rotational Symmetry Group (n: rotation order)
Sn Rotation-Reflection Symmetry Group (n: rotation-reflection order)

The --info flag may be used to print the coordinates of the input structure. Supplementary, other flags are available
to the user to control if the calculation should take into account the connectivity --ignore_connectivity,
the atom nature --ignore_atoms_labels, the connectivity threshold that controls if two atoms are connected
--connectivity_thresh or the file that contains a custom connectivity --connectivity_file. In the last
case, the format of the connectivity file should be as follow,

1 2 3 4 5
2 1
3 1

(continues on next page)

3.1. General task scripts 19

cosymlib Documentation

(continued from previous page)

4 1
5 1

where each number is related to the position of the each atom on the input file. For example, in the first line, the
connectivity file tells the program that the atom in position one of the the input file is connected to the second, third,
fourth and fifth atoms, while the second line tells that the second atom is only connected to the first atom. For a
methane molecule where the input file is written as follow,

5
Methane

C 0.0000 0.0000 0.0000
H 0.5288 0.1610 0.9359
H 0.2051 0.8240 -0.6786
H 0.3345 -0.9314 -0.4496
H -1.0685 -0.0537 0.1921

the connectivity file force the carbon atom to be connected to all hydrogen atoms and viceversa. Finally, a list of
available flags and their uncontracted form is listed below.

Short Flag Explicit flag
-h --help
-m --measure
-s --structure
-c --central_atom
-o --output
-l --labels
-v --version

Note: the actual program only runs for Cn, Cs, Ci and Sn symmetry groups as well as their symmetry operations.

3.1.4 cchir

The cchir script allows the user to calculate the chirality of a structure by calculating the continuous symmetry
measure of the Sn improper rotation group. By default the -m flag will measure the S1 symmetry which is equivalent
ot the Cs symmetry group. However, the user can control the order of the impropert rotation by the -order n
flag where n=1,2,4,6,. . . Other additional flags derived from the gsym script that have the same interaction with the
chirality measure are available and list below. For more information of these commands go to gsym subsection of this
page.

Common cchir and gsym commands
-o or --ouput
-c or --central_atom
-v or --version
--info
--center

20 Chapter 3. How to use cosymlib

cosymlib Documentation

3.1.5 esym

We are currenly working on this feature of the program regarding the electronic structure symmetry of molecules,
therefore the actual script is under construction.

3.1.6 cosym

This script is a general script that cover all the previous scripts.

3.2 Specific task scripts

In this section the specific task scripts are described.

3.2.1 shape_map

The shape_map script calculate the continuous shape measures of a single or multiple structures with two reference
structures in the same way the shape script does. However, it computes additional information like the minimum
distortion pathway between the two reference structures, plus the deviation and the generalized coordinate of each
user’s structure. The most common commands available in the script are similar to the commands found in the shape
script. The required commands are the -m_1 SH1` (or ``--measure_1) and the -m_2 SH2 flags, where SH1
and SH2 are the reference structure labels available in the program. Additionally, these flags can be substituted by
the -m_custom_1 SH1 or the -m_custom_2 SH2 to indicate the program that SH1 and/or SH2 are the files
containing a custom reference structure. Moreover, a set of flags are available to control the different plot options
on the shape_map. The --min_dev MIN_DEV and --max_dev MAX_DEV will only show the structures that
are between the minimum and maximum deviation values (MIN_DEV and MAX_DEV), while the --min_gco
MIN_GCO and --max_gco MAX_GCO show the structure that are at the MIN_GCO to MAX-GCO range of the
generalized coordinate. In addition, the user can plot more resolution minimal distortion pathways by setting the
number of structures needed to compute the curve with the --n_points N_POINTS flag.

Finally, a set of mutual flags found in all scripts is available and listed below:

Short Flag Explicit flag
-h --help
-l --labels
-o --output_name
-c --central_atom
-v --version

3.3 Using cosymlib’s APIs

The current API’s are under construction and a set of tutorials will be provide in a near future.

3.2. Specific task scripts 21

cosymlib Documentation

3.4 Shape references

Here are the available shape reference’s labels and their symmetry that can be used by the shape program.

Vertices Label Shape Symmetry
2 L-2 Linear D∞h

vT-2 Divacant tetrahedron (V-shape, 109.47°) C2v
vOC-2 Tetravacant octahedron (L-shape, 90.00°) C2v

3 TP-3 Trigonal planar D3h
vT-3 Pyramidb (vacant tetrahedron) C3v
fac-vOC-3 fac-Trivacant octahedron C3v
mer-vOC-3 mer-Trivacant octahedron (T-shape) C2v

4 SP-4 Square D4h
T-4 Tetrahedron Td
SS-4 Seesaw or sawhorseb (cis-divacant octahedron) C2v
vTBPY-4 Axially vacant trigonal bipyramid C3v

5 PP-5 Pentagon D5h
vOC-5 Vacant octahedronb (Johnson square pyramid, J1) C4v
TBPY-5 Trigonal bipyramid D3h
SPY-5 Square pyramidc C4v
JTBPY-5 Johnson trigonal bipyramid (J12) D3h

6 HP-6 Hexagon D6h
PPY-6 Pentagonal pyramid C5v
OC-6 Octahedron Oh
TPR-6 Trigonal prism D3h
JPPY-6 Johnson pentagonal pyramid (J2) C5v

7 HP-7 Heptagon D7h
HPY-7 Hexagonal pyramid C6v
PBPY-7 Pentagonal bipyramid D5h
COC-7 Capped octahedrona C3v
CTPR-7 Capped trigonal prisma C2v
JPBPY-7 Johnson pentagonal bipyramid (J13) D5h
JETPY-7 Elongated triangular pyramid (J7) C3v

8 OP-8 Octagon D8h
HPY-8 Heptagonal pyramid C7v
HBPY-8 Hexagonal bipyramid D6h
CU-8 Cube Oh
SAPR-8 Square antiprism D4d
TDD-8 Triangular dodecahedron D2d
JGBF-8 Johnson - Gyrobifastigium (J26) D2d
JETBPY-8 Johnson - Elongated triangular bipyramid (J14) D3h
JBTP-8 Johnson - Biaugmented trigonal prism (J50) C2v
BTPR-8 Biaugmented trigonal prism C2v
JSD-8 Snub disphenoid (J84) D2d
TT-8 Triakis tetrahedron Td
ETBPY-8 Elongated trigonal bipyramid (see 8) D3h

9 EP-9 Enneagon D9h
OPY-9 Octagonal pyramid C8v
HBPY-9 Heptagonal bipyramid D7h
JTC-9 Triangular cupola (J3) = trivacant cuboctahedron C3v
JCCU-9 Capped cube (Elongated square pyramid, J8) C4v
CCU-9 Capped cube C4v

Continued on next page

22 Chapter 3. How to use cosymlib

cosymlib Documentation

Table 1 – continued from previous page
Vertices Label Shape Symmetry

JCSAPR-9 Capped sq. antiprism (Gyroelongated square pyramid J10) C4v
CSAPR-9 Capped square antiprism C4v
JTCTPR-9 Tricapped trigonal prism (J51) D3h
TCTPR-9 Tricapped trigonal prism D3h
JTDIC-9 Tridiminished icosahedron (J63) C3v
HH-9 Hula-hoop C2v
MFF-9 Muffin Cs

10 DP-10 Decagon D10h
EPY-10 Enneagonal pyramid C9v
OBPY-10 Octagonal bipyramid D8h
PPR-10 Pentagonal prism D5h
PAPR-10 Pentagonal antiprism D5d
JBCCU-10 Bicapped cube (Elongated square bipyramid J15) D4h
JBCSAPR-10 Bicapped square antiprism (Gyroelongated square bipyramid J17) D4d
JMBIC-10 Metabidiminished icosahedron (J62) C2v
JATDI-10 Augmented tridiminished icosahedron (J64) C3v
JSPC-10 Sphenocorona (J87) C2v
SDD-10 Staggered dodecahedron (2:6:2)e D2
TD-10 Tetradecahedron (2:6:2) C2v
HD-10 Hexadecahedron (2:6:2, or 1:4:4:1) D4h

11 HP-11 Hendecagon D11h
DPY-11 Decagonal pyramid C10v
EBPY-11 Enneagonal bipyramid D9h
JCPPR-11 Capped pent. Prism (Elongated pentagonal pyramid J9) C5v
JCPAPR-11 Capped pent. antiprism (Gyroelongated pentagonal pyramid J11) C5v
JaPPR-11 Augmented pentagonal prism (J52) C2v
JASPC-11 Augmented sphenocorona (J87) Cs

12 DP-12 Dodecagon D12h
HPY-12 Hendecagonal pyramid C11v
DBPY-12 Decagonal bipyramid D10h
HPR-12 Hexagonal prism D6h
HAPR-12 Hexagonal antiprism D6d
TT-12 Truncated tetrahedron Td
COC-12 Cuboctahedron Oh
ACOC-12 Anticuboctahedron (Triangular orthobicupola J27) D3h
IC-12 Icosahedron Ih
JSC-12 Square cupola (J4) C4v
JEPBPY-12 Elongated pentagonal bipyramid (J16) D6h
JBAPPR-12 Biaugmented pentagonal prism (J53) C2v
JSPMC-12 Sphenomegacorona (J88) Cs

20 DD-20 Dodecahedrond Ih

24 TCU-24 Truncated cube Oh
TOC-24 Truncated octahedron Oh

48 TCOC-48 Truncated cuboctahedron Oh

60 TRIC-60 Truncated icosahedron (fullerene) Ih

a Non regular polyhedron.
b A regular polyhedron with one or two vertices removed.
c Spherical distribution of vertices with mass center at the origin (apical-basal bond angles of 104.45°).
d For polyhedra with more than 12 vertices the calculation times may be unpractical, for now avoid this calculations

3.4. Shape references 23

cosymlib Documentation

an upgrade is comming soon.
e This is a chiral polyhedron. It must be noticed that the algorithm used by Shape does not distinguish the two
enantiomers of a chiral shape. Therefore, whenever a chiral reference polyhedron is used, the resulting shape
measures may not refer to that specific polyhedron but to its enantiomer.

24 Chapter 3. How to use cosymlib

CHAPTER 4

Tutorials

25

cosymlib Documentation

26 Chapter 4. Tutorials

CHAPTER 5

Useful links

Prof. David Avnir Homepage

Dr. Inbal Tuvi-Arad Homepage

27

http://www.ee.ub.edu
https://www.iqtc.ub.edu
http://dipc.ehu.es
http://chem.ch.huji.ac.il/avnir/index.html
https://www.openu.ac.il/en/personalsites/InbalTuviArad.aspx

cosymlib Documentation

28 Chapter 5. Useful links

http://www.ehu.eus/chemistry/theory/

CHAPTER 6

API Reference

6.1 Cosymlib

class cosymlib.Cosymlib(structures, ignore_atoms_labels=False, ignore_connectivity=False, con-
nectivity=None, connectivity_thresh=None, charge_eh=0, mode=0, preci-
sion=3)

This class contains all the high level methods used in the command line interface scripts. The methods return
formatted results of multiple molecules calculations

Parameters

• structures (list, Geometry , Molecule) – List of Geometry or Molecule

• ignore_atoms_labels (bool) – Ignore atomic element labels is symmetry calcula-
tions

• ignore_connectivity (bool) – Ignore connectivity in symmetry calculations

• connectivity (list) – List of pairs if atom indices that are considered connected

• connectivity_thresh (bool) – Connectivity threshold (Ionic radius is used as refer-
ence)

get_geometries()
Get the geometries

Returns List of Geometry objects

Return type list

get_molecule_path_deviation(shape_label1, shape_label2, central_atom=0)
Get molecule path deviation

Parameters

• shape_label1 (str) – First shape reference label

• shape_label2 (str) – Second shape reference label

29

cosymlib Documentation

• central_atom (int) – Position of the central atom

get_n_atoms()
Get the number of atoms if all structures contains the same number of atoms, else raise exception.

Returns Number of atoms

Return type int

get_point_group(tol=0.01)
Get the point group of all structures

Parameters tol (float) – Tolerance

Returns a list of point group labels

Return type list

get_shape_measure(label, kind, central_atom=0, fix_permutation=False)
Get shape measure

Parameters

• label (str) – Reference shape label

• kind (str) – function name suffix

• central_atom (int) – Position of the central atom

• fix_permutation (bool) – Do not permute atoms during shape calculations

Returns Shape measures

Return type list

molecules
Get the molecules

Returns List of Molecule objects

Return type list

print_chirality_measure(order=1, central_atom=0, center=None, permutation=None,
output=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Prints the chirality measure

Parameters

• order (int) – Order of the chirality measure (1: Cs, 2:Ci, n:S_n)

• central_atom (int) – Position of the central atom

• center (int) – Center of symmetry in Cartesian coordinates. If None center is opti-
mized

• permutation (list, tuple) – Define permutation

• output (hook) – Display hook

print_esym_orientation(group, axis=None, axis2=None, center=None, out-
put=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Prints down an xyz file of the molecule with the orientation_axis

Parameters

• group (string) – Symmetry group

30 Chapter 6. API Reference

cosymlib Documentation

• axis (list) – Main symmetry axis of group

• axis2 (list) – Secondary symmetry axis of group

• center (list, tuple) – Center

• output (hook) – Display hook

print_geometric_measure_info(label, multi=1, central_atom=0, center=None, out-
put=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Prints geometric symmetry measure verbose

Parameters

• label (str) – Symmetry point group label

• multi (int) – Number of symmetry axis to find

• central_atom (int) – Position of the central atom

• center (list) – Center of symmetry in Cartesian coordinates. If None center is opti-
mized

• output – Display hook

Type hook

print_geometric_symmetry_measure(label, central_atom=0, center=None, per-
mutation=None, output=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’ encoding=’UTF-8’>)

Prints geometric symmetry measure in format

Parameters

• label (str) – Symmetry point group label

• central_atom (int) – Position of the central atom

• center (list, tuple) – Center of symmetry in Cartesian coordinates. If None center
is optimized

• permutation (list, tuple) – Define permutation

• output (hook) – Display hook

print_info()
Prints general information about the structures

print_minimum_distortion_path_shape(shape_label1, shape_label2, central_atom=0,
min_dev=None, max_dev=None, min_gco=None,
max_gco=None, num_points=20, out-
put=<_io.TextIOWrapper name=’<stdout>’
mode=’w’ encoding=’UTF-8’>)

Print the minimum distortion path

Parameters

• shape_label1 (str) – First reference shape label

• shape_label2 (str) – Second reference shape label

• central_atom (int) – Position of the central atom

• min_dev (float) –

• max_dev (float) –

6.1. Cosymlib 31

cosymlib Documentation

• min_gco (float) –

• max_gco (float) –

• num_points (int) – Number of points

• output1 (hook) – Display hook

print_point_group(tol=0.01, output=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Print point group of all structures

Parameters tol (float) – Tolerance

print_shape_measure(shape_reference, central_atom=0, fix_permutation=False, out-
put=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-
8’>)

Prints the shape measure of all structures in format

Parameters

• shape_reference (list) – List of references and/or geometries

• central_atom (int) – Position of the central atom

• fix_permutation (bool) – Do not permute atoms during shape calculations

• output (hook) – Display hook

print_shape_structure(shape_reference, central_atom=0, fix_permutation=False,
output=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Prints the nearest shape structure in format

Parameters

• shape_reference (list) – List of references and/or geometries

• central_atom (int) – Position of the central atom

• fix_permutation (bool) – Do not permute atoms during shape calculations

• output (hook) – Display hook

print_symmetry_nearest_structure(label, central_atom=0, center=None, per-
mutation=None, output=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’ encoding=’UTF-8’>)

Prints the nearest structure to ideal symmetric structure

Parameters

• label (str) – Symmetry point group label

• central_atom (int) – Position of the central atom

• center (int) – Center of symmetry in Cartesian coordinates. If None center is opti-
mized

• permutation (list, tuple) – Define permutation

• output (hook) – Display hook

32 Chapter 6. API Reference

cosymlib Documentation

6.2 Molecule

class cosymlib.molecule.Molecule(geometry, electronic_structure=None, name=None)
This is the main class that contains all the information and calculations methods that can a apply to a single
molecule. The functionality is divided in two objects: Geometry and Electronic Structure. In the base class
(Molecule) implements the methods thatrequire both the electronic structure and molecular geometry informa-
tion such as the symmetry of the wave function.

Parameters

• geometry (Geometry, Molecule) – The geometry

• electronic_structure (ElectronicStructure, str) – The electronic struc-
ture

• name (str) – Molecule name

electronic_structure
Get the electronic structure

Returns The electronic structure

Return type ElectronicStructure

geometry
Get the geometry

Returns The geometry

Return type Geometry

get_charge()
Get the charge of the molecule

get_connectivity()
Get the atoms connectivity

Returns the atoms connectivity

Return type list

get_n_atoms()
Get the number of atoms

Returns number of atoms

Return type int

get_pointgroup(tol=0.01)
Get the symmetry point group

Parameters tol (float) – The tolerance

Returns The point group label

Return type str

get_positions()
Get the positions in Cartesian coordinates

Returns the coordinates

Return type list

get_symbols()
Get the atomic elements symbols

6.2. Molecule 33

cosymlib Documentation

Returns the symbols

Return type list

6.3 Geometry

class cosymlib.molecule.geometry.Geometry(positions, symbols=(), name=”, connectiv-
ity=None, connectivity_thresh=1.2)

This class contains the methods related to shape and geometric symmetry calculations

Parameters

• positions (list) – Cartesian coordinates

• symbols (list) – Atomic elements symbols

• name (str) – Geometry name

• connectivity (list) – Connectivity list

• connectivity_thresh (float) – Connectivity threshold

Example

water = Geometry(positions=[[0.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],

symbols=['O', 'H', 'H'],
name='water molecule',
connectivity=[[1, 2], [1, 3]])

get_connectivity()
Get connectivity as a list of pairs of connected atoms

Returns The connectivity

Return type list

get_n_atoms()
Get the number of atoms

Returns number of atoms

Return type int

get_pointgroup(tol=0.01)
Get the symmetry point group

Parameters tol (float) – The tolerance

Returns The point group

Return type str

get_positions()
Get the positions in Cartesian coordinates

Returns the coordinates

Return type list

get_shape_measure(shape_label, central_atom=0, fix_permutation=False)
Get the Shape measure

34 Chapter 6. API Reference

cosymlib Documentation

Parameters

• shape_label (str) – Reference shape label

• central_atom (int) – the central atom position

• fix_permutation (bool) – Do not permute atoms

Returns The measure

Return type float

get_symbols()
Get the atomic elements symbols

Returns the symbols

Return type list

get_symmetry_measure(label, central_atom=0, center=None, multi=1, permutation=None)
Get the symmetry measure

Parameters

• label (str) – Symmetry point group

• central_atom (int) – central atom position (0 if no central atom)

• center (list) – center of the measure in Cartesian coordinates

• permutation (list, tuple) – define permutation

Returns The symmetry measure

Return type float

get_symmetry_nearest_structure(label, central_atom=0, center=None, multi=1, permuta-
tion=None)

Returns the nearest ideal structure

Parameters

• label (str) – symmetry point group

• central_atom (int) – central atom position (0 if no central atom)

• center (list) – center of the measure in Cartesian coordinates

• permutation (list, tuple) – Define permutation

Returns The structure

Return type Geometry

get_symmetry_permutation(label, central_atom=0, center=None, multi=1, permutation=None)
Get the optimum atoms permutation for geometrical symmetry measures

Parameters

• label (str) – Symmetry point group

• central_atom (int) – central atom position (0 if no central atom)

• center (list) – center of the measure in Cartesian coordinates

• permutation (list, tuple) – define permutation

Returns The symmetry measure

Return type float

6.3. Geometry 35

cosymlib Documentation

6.4 Electronic structure

class cosymlib.molecule.electronic_structure.ElectronicStructure(basis, or-
bital_coefficients,
multiplic-
ity=None, al-
pha_energies=None,
beta_energies=None,
al-
pha_occupancy=None,
beta_occupancy=None)

This class contains basically the access to electronic structure data

Parameters

• basis (dict) – The basis set

• orbital_coefficients (list) – Molecular orbital coefficients

• multiplicity (int) – The multiplicity

• alpha_energies (list) – Alpha molecular orbital energies in Hartree

• beta_energies (list) – Beta molecular orbital energies in Hartree

• alpha_occupancy (list) – Occupancy of alpha orbitals

• beta_occupancy (list) – Occupancy of beta orbitals

alpha_electrons
get the number of alpha electrons

Returns alpha electrons

alpha_energies
get the energies of the alpha molecular orbitals

Returns the energies

basis
get the basis set name

Returns basis set

beta_electrons
get the number of beta electrons

Returns beta electrons

beta_energies
get the energies of the beta molecular orbitals

Returns the energies

coefficients_a
get the alpha molecular orbitals coefficients

Returns the alpha molecular orbitals

coefficients_b
get the beta molecular orbitals coefficients

Returns the beta molecular orbitals

36 Chapter 6. API Reference

cosymlib Documentation

multiplicity
get the multiplicity

Returns the multiplicity

s2
get the expected value of spin square operator S2 = (s * (s + 1))

Returns S2

Cosymlib is being developed by the Electronic Structure & Symmetry (ESS) group at the Department de Ciència de
Materials i Química Física and the Institut de Química Teòrica i Computacional (IQTCUB). University of Barcelona.

6.4. Electronic structure 37

http://www.ee.ub.edu
https://www.ub.edu/
https://www.iqtc.ub.edu

cosymlib Documentation

38 Chapter 6. API Reference

Bibliography

[AVN] a) H. Zabrodsky, S. Peleg, D. Avnir, “Continuous symmetry measures”, J. Am. Chem. Soc. (1992) 114,
7843-7851.

b) H. Zabrodsky, S. Peleg, D. Avnir, “Continuous Symmetry Measures II: Symmetry Groups and the Tetra-
hedron”, J. Am. Chem. Soc. (1993) 115, 8278–8289.

c) H. Zabrodsky, D. Avnir, “Continuous Symmetry Measures, IV: Chirality” J. Am. Chem. Soc. (1995) 117,
462–473.

d) H. Zabrodsky, S. Peleg, D. Avnir, “Symmetry as a Continuous Feature” IEEE, Trans. Pattern. Anal.
Mach. Intell. (1995) 17, 1154–1166.

e) M. Pinsky, D. Avnir, “Continuous Symmetry Measures, V: The Classical Polyhedra” Inorg. Chem. (1998)
37, 5575–5582.

[CShM] a) M. Pinsky, D. Avnir, “Continuous Symmetry Measures, V: The Classical Polyhedra” Inorg. Chem. (1998)
37, 5575–5582.

b) D. Casanova, J. Cirera, M. Llunell, P. Alemany, D. Avnir, and S. Alvarez, “Minimal Distortion Pathways
in Polyhedral Rearrangements” J. Am. Chem. Soc. (2004) 126, 1755–1763.

c) S.Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, “Shape maps and polyhedral
interconversion paths in transition metal chemistry” Coord. Chem. Rev. (2005) 249, 1693–1708.

d) K. M. Ok, P. S. Halasyamani, D. Casanova, M. Llunell, P. Alemany, S. Alvarez, “Distortions in Octa-
hedrally Coordinated d0 Transition Metal Oxides: A Continuous Symmetry Measures Approach” Chem.
Mater. (2006) 18, 3176–3183.

e) A. Carreras, E. Bernuz, X. Marugan, M. Llunell, P. Alemany, “Effects of Temperature on the Shape and
Symmetry of Molecules and Solids” Chem. Eur. J. (2019) 25, 673 – 691.

[CSM] a) H. Zabrodsky, S. Peleg, D. Avnir, “Continuous symmetry measures” J. Am. Chem. Soc. (1992) 114,
7843-7851.

b) Y. Salomon, D. Avnir, “Continuous symmetry measures: A note in proof of the folding/unfolding
method” J. Math. Chem. (1999) 25, 295–308.

c) M. Pinsky, D. Casanova, P. Alemany, S. Alvarez, D. Avnir, C. Dryzun, Z. Kizner, A. Sterkin, “Symmetry
operation measures” J. Comput. Chem. (2008) 29, 190–197.

d) M. Pinsky, C. Dryzun, D. Casanova, P. Alemany, D. Avnir, “Analytical methods for calculating Contin-
uous Symmetry Measures and the Chirality Measure” J. Comput. Chem. (2008) 29, 2712–2721.

39

cosymlib Documentation

e) C. Dryzun, A. Zait, D. Avnir, “Quantitative symmetry and chirality—A fast computational algorithm
for large structures: Proteins, macromolecules, nanotubes, and unit cells” J. Comput. Chem. (2011) 32,
2526–2538

f) M. Pinsky, A. Zait, M. Bonjack, D. Avnir, “Continuous symmetry analyses: Cnv and Dn measures of
molecules, complexes, and proteins” J. Comput. Chem. (2013) 34, 2–9.

g) C. Dryzun, “Continuous symmetry measures for complex symmetry group” J. Comput. Chem. (2014)
35, 748–755.

h) G.Alon, I. Tuvi-Arad, “Improved algorithms for symmetry analysis: structure preserving permutations”
J. Math. Chem. (2018) 56, 193–212.

[CCM] a) H. Zabrodsky, D. Avnir, “Continuous Symmetry Measures, IV: Chirality” J. Am. Chem. Soc. (1995) 117,
462–473.

b) M. Pinsky, C. Dryzun, D. Casanova, P. Alemany, D. Avnir, “Analytical methods for calculating Contin-
uous Symmetry Measures and the Chirality Measure” J. Comput. Chem. (2008) 29, 2712–2721.

c) C. Dryzun, A. Zait, D. Avnir, “Quantitative symmetry and chirality — A fast computational algorithm
for large structures: Proteins, macromolecules, nanotubes, and unit cells” J. Comput. Chem. (2011) 32,
2526–2538

[QCSMs] a) C. Dryzun, D. Avnir, “Generalization of the Continuous Symmetry Measure: The Symmetry of Vectors,
Matrices, Operators and Functions” Phys. Chem. Chem. Phys. (2009) 11, 9653–9666.

b) C. Dryzun, D. Avnir, “Chirality Measures for Vectors, Matrices, Operators and Functions”
ChemPhysChem (2011) 12, 197–205.

c) P. Alemany, “Analyzing the Electronic Structure of Molecules Using Continuous Symmetry Measures”
Int. J. Quantum Chem. (2013) 113, 1814–1820;

d) P. Alemany, D. Casanova, S. Alvarez, C. Dryzun, D. Avnir, “Continuous Symmetry Measures: a New
Tool in Quantum Chemistry” Rev. Comput. Chem. (2017) 30, 289–352.

40 Bibliography

Python Module Index

c
cosymlib, 29
cosymlib.molecule, 33
cosymlib.molecule.electronic_structure,

36
cosymlib.molecule.geometry, 34

41

cosymlib Documentation

42 Python Module Index

Index

A
alpha_electrons (cosym-

lib.molecule.electronic_structure.ElectronicStructure
attribute), 36

alpha_energies (cosym-
lib.molecule.electronic_structure.ElectronicStructure
attribute), 36

B
basis (cosymlib.molecule.electronic_structure.ElectronicStructure

attribute), 36
beta_electrons (cosym-

lib.molecule.electronic_structure.ElectronicStructure
attribute), 36

beta_energies (cosym-
lib.molecule.electronic_structure.ElectronicStructure
attribute), 36

C
coefficients_a (cosym-

lib.molecule.electronic_structure.ElectronicStructure
attribute), 36

coefficients_b (cosym-
lib.molecule.electronic_structure.ElectronicStructure
attribute), 36

Cosymlib (class in cosymlib), 29
cosymlib (module), 29
cosymlib.molecule (module), 33
cosymlib.molecule.electronic_structure

(module), 36
cosymlib.molecule.geometry (module), 34

E
electronic_structure (cosym-

lib.molecule.Molecule attribute), 33
ElectronicStructure (class in cosym-

lib.molecule.electronic_structure), 36

G
Geometry (class in cosymlib.molecule.geometry), 34

geometry (cosymlib.molecule.Molecule attribute), 33
get_charge() (cosymlib.molecule.Molecule method),

33
get_connectivity() (cosym-

lib.molecule.geometry.Geometry method),
34

get_connectivity() (cosymlib.molecule.Molecule
method), 33

get_geometries() (cosymlib.Cosymlib method), 29
get_molecule_path_deviation() (cosym-

lib.Cosymlib method), 29
get_n_atoms() (cosymlib.Cosymlib method), 30
get_n_atoms() (cosym-

lib.molecule.geometry.Geometry method),
34

get_n_atoms() (cosymlib.molecule.Molecule
method), 33

get_point_group() (cosymlib.Cosymlib method),
30

get_pointgroup() (cosym-
lib.molecule.geometry.Geometry method),
34

get_pointgroup() (cosymlib.molecule.Molecule
method), 33

get_positions() (cosym-
lib.molecule.geometry.Geometry method),
34

get_positions() (cosymlib.molecule.Molecule
method), 33

get_shape_measure() (cosymlib.Cosymlib
method), 30

get_shape_measure() (cosym-
lib.molecule.geometry.Geometry method),
34

get_symbols() (cosym-
lib.molecule.geometry.Geometry method),
35

get_symbols() (cosymlib.molecule.Molecule
method), 33

get_symmetry_measure() (cosym-

43

cosymlib Documentation

lib.molecule.geometry.Geometry method),
35

get_symmetry_nearest_structure() (cosym-
lib.molecule.geometry.Geometry method), 35

get_symmetry_permutation() (cosym-
lib.molecule.geometry.Geometry method),
35

M
Molecule (class in cosymlib.molecule), 33
molecules (cosymlib.Cosymlib attribute), 30
multiplicity (cosym-

lib.molecule.electronic_structure.ElectronicStructure
attribute), 36

P
print_chirality_measure() (cosym-

lib.Cosymlib method), 30
print_esym_orientation() (cosymlib.Cosymlib

method), 30
print_geometric_measure_info() (cosym-

lib.Cosymlib method), 31
print_geometric_symmetry_measure()

(cosymlib.Cosymlib method), 31
print_info() (cosymlib.Cosymlib method), 31
print_minimum_distortion_path_shape()

(cosymlib.Cosymlib method), 31
print_point_group() (cosymlib.Cosymlib

method), 32
print_shape_measure() (cosymlib.Cosymlib

method), 32
print_shape_structure() (cosymlib.Cosymlib

method), 32
print_symmetry_nearest_structure()

(cosymlib.Cosymlib method), 32

S
s2 (cosymlib.molecule.electronic_structure.ElectronicStructure

attribute), 37

44 Index

	Introduction
	Installation
	How to use cosymlib
	Tutorials
	Useful links
	API Reference
	Bibliography
	Python Module Index
	Index

